'V TUTORIAL BASIC

LINUX

TUTORIAL

JULIET KEMP

WHY DO THIS?
+ Learn the Python of
its day

+ Gain common ground
with children of the 80s

* Realise how easy we've
got it nowadays

Here's bwBASIC running
the square root program,
then using the LIST
keyword interactively to
show the code listing.

™
i

BASIC: THE LANGUAGE THAT
STARTED A REVOLUTION

Explore the language that powered the rise of the microcomputer -
including the BBC Micro, the Sinclair ZX86, the Commodore 64 et al.

computer language | ever wrote. In my case, it

was on a Sharp MZ-700 (integral tape drive,
very snazzy) hooked up to my grandma's old black
and white telly. For other people it was on a BBC
Micro, or a Spectrum, or a Commodore. BASIC,
explicitly designed to make computers more
accessible to general users, has been around since
1964, but it was the microcomputer boom of the late
1970s and early 1980s that made it so hugely popular.
And in various dialects and BASIC-influenced
languages (such as Visual Basic), it's still around and
active today.

The very first version of BASIC (which stands for
Beginner's All-purpose Symbolic Instruction Code),
Dartmouth BASIC, was designed and implemented at
Dartmouth College in 1964. It was written by a team
of students working (often all night during the initial
sessions) under the direction of the designers, John
Kemeny and Thomas Kurtz.

In 1964, “‘computer” still meant a huge mainframe
machine, with very limited access. To run a program,
you needed to get it onto punch cards, submit your
punch cards to be run, then get more punch cards
back with the output of your program. It was a slow
and opaque process, and initially only a very few
people had any kind of access at all. However, in the
early 1960s, less mathematically oriented students
and researchers were just beginning to use
computers for their research.

Like many of my generation, BASIC was the first

juliet@inspiral: ~/coding/basic

ile Edit View Search Preferences Tabs Help

1. juliet@inspiral: ~/coding/basic H

9.2195445
9.2736185
9.327379

9.3808315
9.4339811
9.4868330
9.539392

9.591663

9.6436508
9.6953597
9.7467943
9.7979590
9.8488578
9.8994949
9.9498744

10.0498756

1 list
: LET X =0
r LET X=X+ 1

¢ PRINT X, SQR(X)
: IF X <= 180 THEN 28
: END

920

www.linuxvoice.com

John Kemeny, who spent time working on the
Manhattan Project during WWII, and was inspired by
John von Neumann (as seen in Linux Voice 004), was
chair of the Dartmouth Mathematics Department
from 1955 to 1967 (he was later president of the
college). One of his chief interests was in pioneering
computer use for ‘ordinary people’ — not just
mathematicians and physicists. He argued that all
liberal arts students should have access to computing
facilities, allowing them to understand at least a little
about how a computer operated and what it would do;
not computer specialists, but generalists with
computer experience. This was fairly far-sighted for
the time — Kemeny correctly argued that computers
would be a major part of Dartmouth students’ future
lives even if they weren't themselves ‘programmers’.

Dartmouth BASIC

His colleague, Thomas E Kurtz, another Dartmouth
mathematics professor, was also enthusiastic about
this idea. Their aim was to make computers freely
available to all students, in the same way as library
books (Dartmouth was famous for its large open
access library). Later, Kurtz became director of the
Computation Centre, and later the Office of Academic
Computing, and the CIS program, at Dartmouth. He
and Kemeny also developed True BASIC in the early
1980s, which Kurtz still works on.

Widening computer access meant dealing with two
problems. One was the non-intuitive nature of ALGOL
and FORTRAN, the most popular languages at the
time. Kemeny and Kurtz felt that the more instruction
was needed to begin to write programs in a language,
the fewer students would end up using it. BASIC was
written to be intuitive, using keywords like GOODBYE
to log off. And although this very first version of BASIC
was compiled, it was still “‘compile and go" — meaning
that from the programmer's point of view, compiling
and executing the program was a single step, and
feedback was immediate. (Later versions were
interpreted, meaning that programs ran without an
intermediate step in which the whole program was
compiled into machine code.) This all made it easier
for non-specialists to start programming.

The second problem was that computers were still
large, expensive machines taking up a whole room.
Actually providing each student and faculty member
with a computer was not remotely feasible. However,
anew idea had just arisen which would make

BASIC TUTORIAL V

computer access much easier. This was time-sharing,
in which multiple teletypes were connected to a single
central computer. The computer would then allocate a
certain amount of time to each simultaneous user. So
the user could type in a BASIC program, and see it run,
from their teletype in another room. A time-sharing
scheme had just been implemented at MIT by John
McCarthy, who recommended the system to Kemeny
and Kurtz. But the Dartmouth Time-Sharing System,
which went live, along with BASIC, on 1 May 1964,
was the first successfully implemented large-scale
such system.

Later, a few local secondary schools were also
added to the network, and eventually the Dartmouth
Educational Network was formed, allowing over 40
colleges, 20 secondary schools, and a variety of other
institutions to access computing facilities remotely.
Eighty percent of Dartmouth students were able to
learn to program using BASIC and the DTSS.

The first BASIC program run from a terminal ran on
1 May, 1964 (exactly 50 years ago as | write this), and
consisted, depending on who you ask, either of an
implementation of the Sieve of Eratosthenes (which
finds prime numbers), or of this line:

PRINT 2 + 2

For historical resonance, try that in the emulators
discussed below before you get started with the rest
of the programs.

ALGOL

BASIC was loosely based on FORTRAN Il and a little
bit of ALGOL 60. Kemeny and Kurtz initially tried to
produce a cut-down version of one of these
languages; when this didn't work, they moved on to
creating their own.

ALGOL, which exists in several variants, is
imperative and procedural. ALGOL 58 was intended to
avoid the problems seen in FORTRAN, and eventually
gave rise to a huge number of languages including C
and Pascal. ALGOL 60 improved on ALGOL 58,
introducing nested functions and lexical scope,
among other things. While very popular among
research scientists, it was never commercially popular

Other emulators

Lots of other emulators are also available for various early

microcomputers and for BASIC. Here are a few options:

B Alist of Spectrum emulators www.worldofspectrum.org/
emulators.html.

B Two ZX81 emulators are available for Linux: SZ81 (http://
sz81.sourceforge.net), and 781 (www.svgalib.org/rus/
281.html).

M Dartmouth BASIC (RFQ BASIC) is available for Android
http://laughton.com/basic.

B And if you're looking for type-in programs to try out,
the book BASIC Computer Games is available as an
online scan. (NB: this worked when [first looked at it,
then didn't a week later. I include it here in the hope
that the problem is temporary.) www.atariarchives.
orgbasicgames.

Jjuliet@inspiral: ~/coding/basic

File Edit View Search Preferences Tabs Help

1. juliet@inspiral: ~/coding/basic 2

juliet@inspiral:~/coding/basic$ bwbasic name.bas =
Bywater BASIC Interpreter/Shell, version 2.208 patch level 2

Copyright (c) 1993, Ted A. Campbell

Copyright (c) 1995-1997, Jon B. Volkoff

Hello, what is your name?
7 Juliet
Hello Juliet
bwBASIC: list
10: print "Hello, what is your name?"
20: input username$
30: print "Helle "; username$
408: end

Our Name program running
on bwhasic, again with the
LIST keyword shown.

due to its lacking a standard input/output library. It
has, though, had a huge effect on computer language
development, largely due to the fact that it was used
as a standard algorithm description for years.

Running Dartmouth BASIC

An emulator is still theoretically available online, but
the online version no longer works at time of writing,
and the download version only exists for Mac and
Windows. (It's also seven years old so may not work
on either anyway; | was unable to test it.)

However, at least some Dartmouth BASIC
programs ought to run with a modern BASIC
interpreter. The Dartmouth BASIC manual from
October 1964 is available online from Bitsavers.org (a
fantastic resource). The second program listing in the
manual will run with the bwbasic interpreter (available
as a package for Debian/Ubuntu) and ought to run on
any other BASIC interpreter, as it is pretty
straightforward:

T0LETX=0
20LETX=X+1

30 PRINT X, SQR(X)

40 IF X <= 100 THEN 20
50 END

As is fairly obvious (BASIC was after all designed to
be easy to read), this is just a loop that prints out x and
its square root for the values 1to 101. A couple of
notes: firstly, BASIC is case-sensitive in general, but in
bwbasic, commands and functions are not case-
sensitive. LET and let will do the same thing. (This is
not true of all BASICs — many insist on caps.)

Line numbers, as in the loop here, are used as
labels. They are also used by the compiler to
automatically order the lines. You could write the lines
of code backwards in your file (from 50 down to 10),
and the compiler would rearrange them for you and
run them in the correct order. It is a good idea to
number your lines in 10s rather than 1s, to make it
easier to insert new lines in between. Unfortunately,
bwbasic doesn't include the RENUMBER command,
which is in the ANSI BASIC standard, though it does
include DO NUM and DO UNNUM (which number and
un-number the program lines, but do not change any
GOSUB or GOTO statements). Dartmouth BASIC
didn't have RENUMBER either, though.

www.linuxvoice.com 91

'V TUTORIAL BASIC

jsbeeb - a Javascript BBC micro emulator

ACorn

e caps shift drive drive
r lock lock 072 1/3

Our Dice program typed
into BBC BASIC simulator.
Note the error in line

48 (later corrected by
reentering the line).

92

OFsS

DICEMUMEER
"YOU WANT TO THROW "

OICENUMEE

+ 1 TO DIC
RANDOM = R
T "DIE THER

MEER

ZDICE

This doesn't use GOTO, as the IF/THEN statement
only needs a single line. Run it with bwbasic test.bas
to try it out. You can also use bwbasic interactively.

Unfortunately, the first program in the Dartmouth
manual doesn't run under bwbasic, as it relies on
READ and DATA behaving in certain ways. READ is
used to read values from the next available DATA line.
[t seems that in 1964 Dartmouth BASIC, when the
program ran out of DATA lines, it would stop. In
bwbasic, it just stops reading in new values, but
continues to run (if possible) with any values already
present. This demonstrates one problem with
translating BASIC programs between different
dialects; the detail of the keywords can vary enough to
cause problems.

BASIC with microcomputers
In the mid-1970s, advances in technology led to the
invention of the microprocessor — a single chip that
could act as an entire CPU, rather than the many
different components that made up a mainframe
CPU. This in turn meant the emergence of
microcomputers: small, relatively cheap computers
that could be used at home.

The first models were sold in kit form and were
very limited (like the Altair 8800, which had only
256 bytes of RAM, and only switches and lights for
input/output); but very quickly, home users could
get machines that were cheap, fairly easy to set up
(they would often plug into a TV as a monitor), and
genuinely useful. Classic microcomputers of this
era included the Commodore 64 (the single highest-
selling computer model of all time); the Sinclair
ZX-80, ZX-81 and Spectrum; the BBC Micro; and the
Apple II. All of these (and pretty much every other
microcomputer of the time) had some variety of
BASIC as a built-in primary programming language
and operating environment. You didn't just write your
programs in BASIC, you used BASIC to run them, and

www.linuxvoice.com

you could type BASIC statements straight in at the
prompt once the machine started.

Type-in programs — long listings for the user to type
in directly — were very popular in books and in
computer magazines. A lack of cheap portable
storage media (some machines took tapes, but
packaging a tape with a magazine was expensive in
the 70s; and few people had modems or bulletin
board access), combined with the fact that programs
had to be fairly short due to the memory and other
limitations of the machines, meant that it was
possible to type in even quite complicated programs.
However, type-ins could take hours, and the process
was error-prone for lots of reasons, including
programmer error, typing error, and poor-quality
printing. After the arduous process of typing in, the
eager reader would then have to track down the bugs
they'd introduced. When listings were all written in
straight BASIC, this wasn't too hard. But as programs
became more complicated, it became more common
to have long listings of machine language or
assembly code, with only a little snippet of BASIC
which handled POKEing this into various locations.

This was nearly impossible to debug. Tactics to
resolve this problem included checksum programs to
apply to each line of machine code, but it made
type-ins ever harder to use. Early on, you could often
send a small sum to the programmer in exchange for
a tape of the program, and by the mid-1980s it was
becoming more common for magazines to include
tapes on the cover.

Another issue was that there were lots of different
dialects of BASIC (all the manufacturers mentioned
above had their own versions). Some programs might
be transferable, or universal, since there was a shared
core set of keywords, but the detail of keyword
implementation varied, and some BASICs had
keywords which others did not. (As demonstrated in
the two different dialects of BASIC in the next section.)
The various dialects meant that some magazines
were variant- or machine-specific, and some would
add notes for changes to make to the printed listing
for different machines. They would also add
suggested changes that users could make to alter the
printed program, promoting the fundamental idea
behind BASIC that programlmming was something
anyone could do.

In 1984, COMPUTE! Magazine published a type-in
word processor, SpeedScript (later also published as a
book), which may have been the high point (in one
sense, at least) of type-in programming. In 1988, the
magazine discontinued all type-in programs, and
type-ins in general faded around that time, though for
8-bit machines they lasted into the 1990s.

BBC BASIC emulator

There are various emulators available for various
different manufacturers and brands of machine, but
one of the easiest to use (and of a brand which was
very popular in the UK at the time) is the JavaScript

implementation of the BBC Micro JSBeeb (at http://
bbc.godbolt.org). You can load your own disc images,
as well as several discs from the StairwaytoHell.com
archive; but you can also type BASIC files in line-by-
line directly to the emulator. (Be warned that some of
the keys behave a bit strangely; | had to experiment to
work out where it thought keys like =, +, * etc were.)

You can type in the program listings here exactly as
given. If you type in a line without a line number, that
line will be immediately executed. Lines with line
numbers are stored in memory. If you re-enter a given
line by number then the previous one is overwritten.
You can list the program currently in memory with
LIST, and delete a range of lines with DELETE 10-100.

The four lines below comprise the first program |
remember writing in BASIC:
10 PRINT “HELLO, WHAT IS YOUR NAME?"
20 INPUT NAMES
30 PRINT “HELLO “ NAMES
40 END

Once you've typed that in, type RUN, which runs the
lines in memory, and it should do what you would
expect. BASIC listings at this sort of level are pretty
self-explanatory! Note that to get a string variable, you
need to use a name ending in $; without that the
default variable type is numeric. Here, if you don't use
the $, it will try to translate the input into a number
(and doubtless output something odd).

You can also define arrays in BASIC with this line:
DIM MyVariable(20)
which will create a numeric array of length 20.
Keywords in BBC BASIC must be in capitals; variable
names can be lower case or upper case as you prefer
(but are case sensitive). (It was common at the time
just to stick caps lock on and use that for everything,
to avoid errors with keywords.)

Note that if you would rather run this on bwbasic,
you need to change line 30:
30 PRINT “HELLO “; USERNAMES
which is one illustration of the differences between
different versions of BASIC.

Now here's a dice simulation to type into the BBC
BASIC simulator:
10 PRINT “HELLO, HOW MANY DICE TO THROW?"
20 INPUT DICENUMBER
30 PRINT “YOU WANT TO THROW “ DICENUMBER “ DICE.”
40 FOR I = 1 TO DICENUMBER
50 DICERANDOM = RND(6)
60 PRINT “DIE THROWN “ DICENUMBER
70 NEXT
80 END

This demonstrates the FOR...NEXT loop. As with
modern code, you specify start and end, and
optionally step up (1 being the default). At line 50, we
use the keyword RND to generate a random number.
With BBC BASIC, RND without a parameter generates
arandom number between 0 and 1 (exclusive of 1);
RND(number) generates a random integer between 1
and number (inclusive of number). Run this with RUN
and try throwing some dice.

BASIC TUTORIAL V

GOTO Considered Harmful

BASIC contained, from a reasonably early is happening in the course of the program,
version, the GOTO statement. A couple where, and when).

of years later, Dutch computer scientist However, in early versions of BASIC, due
Edsger Dijkstra wrote his classic essay to interpreter limitations in handling FOR or
Go To Statement Considered Harmful, arqguing ~ WHILE (and single-line IF statements), GOTO
that the GOTO statement encourages messy was essential. Modern versions of BASIC
programming and makes it too easy to lose deprecate it for uses other than returning to
track of the program process (roughly, what the top of a main loop.

The same simulation for bwbasic is a little different
in the way it generates the random numbers:
35 RANDOMIZE TIMER
40 FOR 1 = 1 TO DICENUMBER
50 DICERANDOM = RND
60 PRINT “DIE THROWN “; CINT(DICERANDOM * 5 + 1)
70 NEXT
80 END

bwbasic only implements RND without the
parameter, so our random number is somewhere
between 0 and 0.9999.... The CINT keyword (not
available in BBC BASIC, although INT does something
similar) rounds a number down to the integer below it.
So to generate our 1—6 random number, we multiply
by 5,add 1, and round down.

An easy improvement of this program would be to
enable the user to specify how many sides the dice
have, as well as how many dice to throw. Beyond that,
play around with it as you like.

BBC BASIC has also been updated and made
available for various platforms including Z80-based
computers. The manual and downloads for the Z80
and DOS version are available online here
(www.bbcbasic.co.uk/bbchasic/bbcbasic.html).
These versions are intended to be as compatible as
possible with the BBC BASIC that ran on the BBC
Micro series computers, so the manuals available
here are your best option if you want to experiment
more with the emulator. From the same site, you can
also download Brandy BASIC for Linux, which you will
have to compile to run.

Despite some disparagement over the years, BASIC
had a significant impact on a generation of coders
and on a particular approach to more intuitive
programming. That built-in BASIC prompt during the
microcomputer era also meant that a generation of
computer users were accustomed to the idea of
programming and adapting the computer for your
own purposes — in itself a hugely positive idea.
Modern computers are far superior in almost all
regards to those early microcomputers, and modern
programming languages far more powerful and
flexible than BBC BASIC and its ilk. But the sheer ease
of access does set BASIC apart from the rest. At least,
I'm pretty sure that's not just the nostalgia talking... @

Juliet Kemp is a programming polyglot, and the author of

O'Reilly’s Linux System Administration Recipes.

www.linuxvoice.com

93

