
www.linuxvoice.com

LINUX KERNEL PARAMETERS

26

“In an ideal world the user would
never need to think about the
kernel, but sometimes we have to.”

LINUX KERNEL
PARAMETERS

DISCLAIMER
The examples we’ve picked are unlikely to cause trouble, but altering kernel parameters can cause crashes and data loss.

Tread lightly and experiment in a VM or a non-production system.

Dip your toe into the mysterious heart of your
Linux machine, with Andrew Conway and the

magic of Linux kernel parameters.

The dark days when new computer hardware
often required compiling your own kernel
are now firmly in Linux’s past (though those

were fun days). But the fact that Linux – meaning
the kernel itself – is free software means that you can
still delve deep into its innards and tweak it to your
heart’s content.

In an ideal world, the user would never need to think
about the kernel, but there are cases where it’s useful.
In fact, it becomes a
necessity when
hardware is faulty,
such as with bad
memory, or if it is
shipped with buggy
firmware that tells lies
about capabilities such as CPU speed or temperature.
In these cases, you’ll need more control over the
hardware than userspace software allows, and setting
kernel parameters lets you do that without the hassle
of compiling a kernel.

Let’s start with an example we encountered when
bad memory came to plague a shiny new laptop.
Sometimes it’s not possible to replace the memory
(for example, the SOC in a Raspberry Pi), and for some
the expense of buying replacement hardware may be
prohibitive – think of folk using old hardware in
developing countries.

If you’re experiencing the symptoms of bad
memory – random freezes and crashes – then you

should test it using a venerable utility called
memtest86+. Many distros include it as an option at
the boot prompt, or you can put a distro such as
GPartedLive on a USB stick and select the
memtest86+ option. The test will tell you if you’ve got
bad memory and exactly where it is bad. In our case,
the bad patch was reported as 2056.0MB to
2176.0MB. The solution was to restart the laptop, and
when the bootloader began, switch to its command

line and set the
memmap kernel
parameter with
memmap=256M$2048M

This instructs the
kernel not to use the
256MB of memory

from 2048MB, and once booted with this parameter
setting, the laptop became completely stable. The
only noticable difference was that it had 256MB less
memory than before. Given that it had 8GB of
memory in the first place, this loss isn’t too much of a
problem and saves on the cost and hassle of having it
fixed if outside the warranty period.

The arcane lore of the kernel
The memmap fix is straightforward enough once you
understand it, but first you have to know that such a
parameter exists and what its cryptic syntax means.
For example, you can replace $ with & or # and it’ll
work completely differently, and if you don’t respect

LINUX KERNEL PARAMETERS

www.linuxvoice.com 27

memory boundaries it won’t work at all. The aim of
this article is to explore kernel parameters in case you
have to use them in real situations involving faulty
hardware or custom hobby projects.

To set kernel parameters at boot time you need
to get to know your bootloader. You can either set
kernel parameters manually each time or edit the
bootloader’s configuration file so that it gets set
automatically on every boot. We’ll concentrate on the
most popular bootloader Grub 2, but the parameters
themselves will be the same for any bootloader such
as Lilo or SysLinux.

To boot
You need to pay close attention at startup. If you see a
text screen with ‘GNU GRUB’ at the top, then just
press E before the timeout ends and booting begins. If
you don’t see the Grub screen, and by default you
won’t with a normal Ubuntu install, you’ll need to press
the Shift key to enter the Grub menu. This didn’t work
for us when booting Ubuntu 14.04 in a VirtualBox VM
due to a problem with the VM capturing the keyboard,
so if you experience it too, or you wish to boot to the
Grub screen everytime instead of frantically jabbing at
the Shift key, let it boot up into the OS, open a terminal
window and edit the configuration file:
sudo nano /etc/default/grub
and put a # at the start of the line with GRUB_
HIDDEN_TIMEOUT=0 to comment it out. Then save
the file and tell Grub to update with:
sudo update-grub

This causes Grub to rewrite its files on the disk.
These are essential for booting your computer, so be
vigilant for errors or warnings, and if you do get any,
check online to find out what they mean and take
action if needed. If update-grub did its job properly,
reboot your computer and you should be presented
with the GNU Grub screen where you can press E.

You will now see a rather intimidating dozen or so
lines, as shown in the screenshot, below. These are
commands for Grub, but towards the end you should
see a line that starts with linux – this is the kernel
command line. On Ubuntu 14.04 (installed using GPT
and EFI) it looks like this:
linux	 /boot/vmlinz-3.13.0-32-generic.efi.signed
root=UUID=<long UUID> ro quiet splash

Yours may differ in detail, but immediately after
linux you will see the location of the file containing the
kernel that will be used. After that is our first kernel
parameter, root. This is crucial. It specifies the device

that contains the root filesystem; in this case it’s
specified by a UUID. It’s still common to see
something like root=/dev/sda2, which means the
second partition (2) on the first disk (a). Then we have
ro, which means that the filesystem should be
mounted read-only so that disk checks can be reliably
performed – it will be remounted rw or read-write later
on. Next we have quiet, which tells the kernel not to
output verbose text to the console, and splash
enables a pretty graphic screen during booting.

As a safe and informative experiment, try deleting
quiet and splash, then hit F10 to boot the system and
you’ll see lots of kernel messages spewed onto the
console. Ordinarily this isn’t all that useful, except
perhaps if you twitch your unblinking eyes very fast
and say “interesting” to fool an onlooker that you can
read as fast as Data from Star Trek. Of course, these
messages can yield vital clues if the boot process is
getting held up, or stops altogether. One common
problem that can be spotted this way is if the partition
or disk with the root filesystem isn’t found where it
should be. Correcting the setting of the root kernel
parameter can fix it, although it could just be that that
the drive isn’t plugged in, or has an unsupported
filesystem. If you’ve ruled out all those causes and
you’re dealing with a USB-connected drive, then it’s
possible it might not have “settled” by the time the
kernel starts looking for it. To avoid this problem you
can add rootdelay=10, which tells the kernel to delay

Press the E key at boot time to bring up this Emacs-like
editor, which lets you set kernel parameters in Grub.

Xconfig uses the Qt toolkit to give a graphical overview of your Linux kernel.

Graphical	kernel	configuration

If you’re uncomfortable on the command
line and just want to learn more about the
kernel, there is a powerful yet simple GUI
application that lets you explore the kernel
and its configuration. To use it, you first need
to download the kernel source from kernel.
org, or you can use apt-get on Ubuntu or
yum on RPM distributions to grab it and
associated tools – details vary, so best

consult the documentation for your distro.
Then open a terminal window and cd to the
top level directory of the kernel source (often
/usr/src/linux, but it’s recommended to
copy the whole directory tree to somewhere
under your home directory). Now type make
xconfig and the window shown will appear
– you can then lose yourself in the graphical
tree of kernel parameter goodness.

www.linuxvoice.com

LINUX KERNEL PARAMETERS

28

Module parameters

The command modinfo video is a great
example of how to show information about
a module, in this case the video module. Of
most interest here are the three parameters
in the parm: lines. You can discover their
current settings by looking at files in the
/sys/module/video directory, as shown for
brightness_switch_enabled. We can discover
what the parameter does by consulting the

list on kernel.org (www.kernel.org/doc/
Documentation/kernel-parameters.txt): “If
set to 1 [or Y], on receiving an ACPI notify
event generated by hotkey, video driver will
adjust brightness level and then send out the
event to user space through the allocated
input device; If set to 0, video driver will
only send out the event without touching
backlight brightness level.”

in LV002), kept dropping its wireless connection. It
seemed that, although Dell had included the latest
drivers for the wireless chipset, they weren’t entirely
bug-free. But setting just one module parameter fixed
the issue, and saved me a good deal of hair loss.

Before going further, let’s take another look at kernel
configuration. You may have noticed some lines like
this that end in =m:
CONFIG_EXT4_FS=m
where m doesn’t stand for “maybe” (although that’d be
accurate), but “module”. This means that the feature,
in this case support for the ext4 filesystem, is not built
into the kernel, but as a module that can be loaded if
needed. When the distro maintainer is compiling the
kernel, they can’t know which filesystems you will use.
So instead of building many filesystems into the
kernel, bloating it with code that won’t be used,
support for different filesystems are built into separate
modules, which can be loaded as needed.

If you know exactly what your kernel will be used to
do and on what hardware it is going to run, such as a
smart TV, then you can build just what is needed into
it, keeping it small and simple, and not have any
modules. The bread analogy is still applicable. You
can use the butter “module” with plain bread for your
morning toast, and you can use the same loaf with
cheese and tomato as “modules” to build a sandwich
for lunch. Alternatively, you could choose to bake
cheese and tomato into a loaf, but it would then only
be useful for certain meals.

Mess with a running system!
Another advantage of modules is that, unlike the
memmap example, you can still set kernel parameters
after the system has booted up. To display
information about a module, use the modinfo
command, as explained in the boxout, left. You can list
the modules currently in use with lsmod – both
commands need to be run as root or with sudo.

Going back to my laptop’s issue with dodgy
wireless, I did some searching and discovered that the
module was buggy when dealing with hardware
encryption, and that loading the module with
hwcrypt=0 would solve problems with the wireless
dropping out. Before you can do that, you need to find
the name of the module that provides the driver for
your wireless chipset. For a USB device, this can be
done by looking through the output from:
usb-devices | less

You should see a block of information for your
device with some human readable text description like
“Wireless networking”, and at the end of the last line
you will see the kernel module in use after Driver=. If
your wireless chip is not USB connected, it will be on
the PCI bus, which requires two steps to identify it.
First locate the wireless chipset with:
sudo lspci | grep -i network

For me this gave a long line that started with
01:00.0, which I could then use to display more
verbose information with this command:

10 seconds before mounting the root filesystem. This
can be especially handy with a Raspberry Pi if you
want to use a large external hard drive to contain a
root filesystem that won’t fit on an SD card.

Kernel, bread and butter
A helpful analogy is to compare the kernel to bread. A
good loaf is baked to a precise recipe. The recipe for
the kernel is its configuration, which specifies what

hardware the kernel supports,
eg types of x86 or ARM
CPUs, and other things like
what filesystems it can work
with, such as ext4 or btrfs.

To see the configuration of
the kernel you’re currently

running, type:
zcat /proc/config.gz | less

Anything that’s set to =y means yes, that feature is
enabled and/or built into the kernel. For example, the
first few lines on the laptop I’m writing this on read are:
CONFIG_64BIT=y
CONFIG_X86_64=y
CONFIG_X86=y
which tells me I can run both 32- and 64-bit x86 code.

Once the configuration is decided, the next step is
to compile it, which is a bit like baking the bread. Both
take a while and involve much heat, which for the
kernel is because compilation is CPU-intensive.

Setting module parameters can breathe new life
into non-functioning hardware, as we saw with
memmap, but it can also help work around buggy
drivers. I was recently dismayed to discover that my
shiny new Dell XPS 13, shipped with Ubuntu (reviewed

“Setting module parameters
can breathe new life into
non-functioning hardware.”

LINUX KERNEL PARAMETERS

www.linuxvoice.com 29

Bootloaders

After you power up a computer, the onboard firmware will hunt for some
code to run. The old-fashioned BIOS will look to the MBR (Master Boot
Record) at the start of any disks it can find, and tell the CPU to run any
suitable code that is found. These days UEFI has replaced the BIOS and
MBR system, and does a similar job but with more features and fewer
limitations.

The most common bootloader is Grub, but others such as Lilo, Syslinux
and Gummiboot all do much the same job in slightly different ways. You
can think of a bootloader as a temporary, mini operating system (see
MikeOS and its excellent documentation) that is needed only in the early
stages of a computer starting up. The final job of any bootloader is to load
the kernel with its command line parameters and also to tell it what to run
as its first process – these days it will be systemd, but some distros still
use init.

The Raspberry Pi is worth a mention because it doesn’t use a normal
bootloader. It starts with its ARM CPU disabled; the GPU runs firmware
code and looks only at the SD card and runs the file /boot/bootcode.bin. If
you want to alter kernel parameters at boot time, you can add them to the
cmdline= line in the /boot/config.txt	file, or in the file /boot/cmdline.txt.

sudo lspci -v -s 01:00.0
On the last line of my output was the important

information Kernel modules: ath9k. (If no kernel
module is listed, then you might need to load it
manually; of which, more later).

To set a module parameter manually, you’ll first
need to unload the module. Warning: doing this could
cause serious problems. It’s safe enough to do with
the module controlling a wireless chipset (as long as
you don’t mind losing wireless for a bit), but unloading
a module for the root filesystem is asking for trouble!
To unload a module, in this case my ath9k module,
just do:
sudo modprobe -r ath9k
then to reload it and set the nohwcrypt parameter, just
enter this line:
sudo modprobe ath9k nohwcrypt=1
and that’s it. This would need to be done every time
the laptop is started up, but you can make it
permanent by creating a file in /etc/modprobe.d. The
name of the file is up to you, but something
descriptive like ath9k_myfix.conf would be
appropriate, and it need only contain:
options ath9k nohwcrypt=1

Remember, this only works if ath9k was compiled
as a kernel module, which will usually be the case, but
if it were compiled into the kernel (y instead of m in
the kernel config), then you can still set it at boot up by
adding ath9k.nohwcrypt=1 to end of the kernel
command line.

There’s more you can do with the conf files.
Sometimes hardware is misidentified and the wrong
kernel module is loaded. For example, say you notice
your wireless is not working and then you notice that
the ath9k_htc module is loaded, but you know your
hardware is not made by HTC. The solution would be
to blacklist the offending module, which you can do
by creating the file /etc/modprobe.d/ath9k_myfix.
conf, but this time it has just this line:

blacklist ath9k_htc
or you might prefer to add that line to an existing
blacklist.conf file. This will stop that incorrect module
from loading, and hopefully you’ll find ath9k is loaded
instead.

Sometimes it’s still necessary to force the loading of
a module. To do this, you can create a file in
/etc/modules-load.d. For example, in order for the
CUPS printing system to work, Ubuntu 14.04 comes
with cups-filters.conf, which contains the following
lines to load three printing related modules:
lp
ppdev
parport_pc

It is possible to set some kernel parameters on a
running kernel even if they’re not part of a module. A
useful example is the swappiness parameter, which
controls how swap space is used. To change it, you
edit a file (actually it’s not a real file, but a virtual one
generated by the kernel) with something like:
sudo nano /proc/sys/vm/swappiness

The file will contain the current setting, which will
probably be the default of 60. Set it to 100 and the
kernel will swap from memory to disk aggressively;
set it to 0 and you may well notice a speed boost, but
at the risk of problems if you run short on memory.

Further reading
The definitive source of information on kernel
parameters is www.kernel.org/doc/Documentation/
kernel-parameters.txt. Ubuntu’s documentation on
kernel parameters is also worth reading: https://wiki.
ubuntu.com/Kernel/KernelBootParameters, as is the
Arch Linux wiki: https://wiki.archlinux.org/index.php/
Kernel_parameters. For a more complete overview of
the subject, though a little out of date now, is Linux
Kernel in a Nutshell by kernel developer Greg Kroah-
Hartman, available as a free download on his website
www.kroah.com/lkn or in print from oreilly.com.

Basic Input/Output System
executes MBR

Master Boot Record
executes Grub

Grand Unified Bootloader
executes kernel

Kernel
executes /sbin/init

Init
executes runlevel programs

Runlevel programs are
executed from /etc/rc.d/rc*.d/

BIOS

MBR

Grub

Kernel

Init

Runlevel

