
CODING PYTHON DRAWING

www.linuxvoice.com

Figure 1. Recursion
can quickly build up the
number of lines in a fractal
as you go to greater
depths, so it’s best to call
speed(0) to set it to the
fastest speed.

The empty handed painter from your streets is drawing
crazy patterns on your screen, with simple Python.

TUTORIAL

There are some programming techniques, like
loops and recursion, that we use all the time,
almost without thinking. However, sometimes

it’s hard to really see what’s going on. Being able to
really visualise what’s going on behind the code can
help you become a better programmer.

Python comes with a turtle module. It’s about as
simple as a drawing program can be. It enables you to
control a turtle with a pen around the screen. You can
tell it to go forwards, turn through various angles, put
the pen down or lift it up, and change its colour. In a
world where almost everything seems to have OpenGL
accelerated graphics, sometimes it’s nice to take a
step back and look at what you can create with very
little. In this tutorial, we’re going to look at how we can
build complex pictures using just this turtle module
and few coding techniques.

Let’s start really simply, and just draw a square:
import turtle
jonney = turtle.Turtle()
for i in range(0,4):
 jonney.forward(100)
 jonney.right(90)
turtle.exitonclick()

That’s all you need. Python will take care of creating
the window to display it in. For some reason this
author always feels the need to give the turtles
anthropomorphised variable names.

You can turn this code into more general polygon
drawing code by moving the loop into a function like
as follows:
import turtle
def draw_polygon(sides, length):
 for i in range(0,sides):
 jonney.forward(length)
 jonney.right(360/sides)
jonney = turtle.Turtle()

draw_polygon(6,20)
turtle.exitonclick()

Because the turtle module only works in whole
numbers, this won’t work properly for polygons where
360/sides isn’t a whole number, but it’s good enough
for our purposes.

Intensify the artiness
This is an article about creating art from code, and
simple polygons aren’t very attractive. With a few
tweaks, the function can be made a little more artistic:
import turtle
def draw_spiral(angle, length_start, length_increase, sides):
 for i in range(0,sides):
 jonney.forward(length_start+(i*length_increase))
 jonney.right(angle)
def draw_petals(length, number):
 for i in range(0, number):
 jonney.forward(length)
 jonney.right(180-(360/number))
jonney = turtle.Turtle()
draw_spiral(30, 10, 2, 20)
jonney.penup()
jonney.goto(0,200)
jonney.pendown()
draw_petals(50,20)
turtle.exitonclick()

You can also vary the colour through the loops. This
both helps you see how the images are drawn, and
makes the outcomes a little more impressive. We
changed the draw_petals() function to the following to

PYTHON DRAWING
PRETTY PATTERNS
Use the Python turtle to illustrate loops and recursion, and
prove that not all art is quite useless.BEN EVERARD

WHY DO THIS?
• Gain a better

understanding
common programming
techniques

• Draw pretty pictures
• Win a T-shirt!

96

PYTHON DRAWING CODING

www.linuxvoice.com

The Kock snowflake
was originally designed
by taking a triangle and
placing a smaller triangle
on every edge, then a
smaller triangle on each
new edge, etc.

97

fade the lines from blue through purple to red.
def draw_petals(length, number):
 red=0.0
 blue=1.0
 for i in range(0, number):
 red=red + (1.0/number)
 blue = blue - (1.0/number)
 jonney.color(red,0.0,blue)
 jonney.forward(length)
 jonney.right(180-(360/number))
turtle.exitonclick()

Fractals and recursion
You can get quite artistic using loops to draw shapes,
but you can take drawing a stage further using
recursion. (Recursion is just when a function calls
itself.) You can use this to progressively process all the
data in a set, or to draw pretty pictures.

This might sound a little strange if you’ve never
thought of trying to draw with code, but actually,
recursion is a really versatile tool in the coder-artist’s
toolbox, and it’s all thanks to a mathematical trick
called fractals.

The idea is really simple. You take a simple line
shape like figure 1 part 1. Then you replace every line
in the shape with a copy of the lineshape. The result of
doing this once is figure 1 part 2. However, you can
keep doing it as many times as you like, each time you
replace every line with a copy of the original line shape.
Figure 1 part 3 shows it done a third time, but
assuming you had a high enough resolution display (or
if you kept zooming in), you could just go on repeating
this more and more times.

The code we used to create figure 1 is:
import turtle
def draw_fractal(length, depth):
 if depth == 1:
 jonney.forward(length)
 else:
 draw_fractal(length, depth-1)
 jonney.right(60)
 if depth == 1:

 jonney.forward(length)
 else:
 draw_fractal(length, depth-1)
 jonney.left(120)
 if depth == 1:
 jonney.forward(length)
 else:
 draw_fractal(length, depth-1)
 jonney.right(60)
 if depth == 1:
 jonney.forward(length)
 else:
 draw_fractal(length, depth-1)

jonney = turtle.Turtle()
jonney.penup()
jonney.goto(-200,0)
jonney.pendown()
draw_fractal(15,1)
turtle.exitonclick()

In this case, we use the depth function to limit the
number of times the recursion happens, otherwise it
could go on indefinitely.

This particular fractal is known as a Kock curve after
its creator, Helge von Kock. However, this isn’t its
best-known form. If you use a triangle for the first
iteration, but revert to the line segment for every other
iteration, you get a Kock snowflake as shown above.

This is created with the code:
import turtle
def draw_snowflake(length, depth):
 draw_fractal(length, depth-1)
 jonney.left(120)
 draw_fractal(length, depth-1)
 jonney.left(120)
 draw_fractal(length, depth-1)
jonney = turtle.Turtle()
jonney.penup()
jonney.goto(-200,0)
jonney.pendown()
draw_snowflake(7,4)
turtle.exitonclick()

Running Python programs
Python is a very easy programming language to get
started in. It’s interpreted, which means you don’t
need to compile the code you’ve written before you
can run it, and it’s installed by almost every
distribution of Linux by default. What’s more, the
turtle module is part of the standard Python library,
so you don’t need to install anything to run the code
in this article. Just enter it into a text editor, save the
file (a .py file extension is usual, but not required),
then run it from the command line with:
python filename.py
If you don’t end your code with the following, then the
window will shutdown as soon as it’s finished
running.
turtle.exitonclick()

CODING PYTHON DRAWING

www.linuxvoice.com

These ferns are depths 3
and 5. We’ve spaced it out
to make it easier to see
what’s going on, but you
can change the parameters
to create more realistic
plants.

98

It also includes the fractal() function from the
previous example.

You can use this same method of recursion in
another way. For example, you can use it to continually
add lines in a particular place. For example, you can
generate a tree by drawing a ‘Y’ shape, then continually
adding smaller ‘Y’ shapes to the end of each branch.
See right for how this works out. In part 1 to 3, the
depth is 1 to 3 respectively. Part 4 has a depth of 7.
This was generated with the code:
import turtle

def draw_tree(length, depth):
 jonney.forward(length)
 if depth > 1:
 jonney.left(45)
 draw_tree(length/2, depth-1)
 jonney.left(90)
 draw_tree(length/2, depth-1)
 jonney.right(135)
 jonney.right(180)
 jonney.forward(length)

jonney = turtle.Turtle()
jonney.penup()
jonney.goto(0,-100)
jonney.pendown()
jonney.left(90)
jonney.speed(0)
draw_tree(160,7)

turtle.exitonclick()
You can extend this. Instead of drawing a Y shape,

you can expand a herring bone in the same way (see
below). Instead of creating the classic tree shape, this
creates a fern-like drawing. The code for this is:
import turtle
def floor(x,y):
 if x > y:
 return x
 return y

def draw_fern(length1, angle1, length2, angle2, depth):

 flip = 1
 for i in range (0, length2):
 jonney.left(angle2)
 jonney.forward(length1)
 if depth > 1:
 jonney.left(angle1*flip)

 draw_fern(floor((length1/3)-(i/2), 1), angle1*flip,
floor(length2-i,1), angle2*flip, depth-1)
 jonney.left(180-angle1*flip)
 flip = flip * -1

 jonney.left(180)

 for i in range(0, length2):
 jonney.forward(length1)
 jonney.right(angle2)

jonney = turtle.Turtle()
jonney.penup()
jonney.goto(0,-100)
jonney.pendown()
jonney.left(90)
jonney.speed(0)
draw_fern(40,60,8,4,1)

turtle.exitonclick()
This particular code is very sensitive to the

parameters you give it. You also can customise the
fractal by changing the way the line lengths are passed
to the next level of recursion, or by progressively
increasing the angle so that the fern starts to curl
towards the end.

With fractals that get smaller and smaller, you’ll quickly
reach the limit of the resolution of the screen.

PYTHON DRAWING CODING

www.linuxvoice.com

Ben Everard is the co-author of Learning Python with
Raspberry Pi, soon to be published by Wiley. He’s also pretty
good at turning foraged fruit into alcohol.

99

You’ve seen how, by using iteration and loops,
you can create complex drawings with very
little code. In this competition, we’re going to
put this to the test. The challenge is to create
a Python program that uses the turtle module
to draw something. I have to be able to
output the code, and the winner will be the
person that creates what we think is the best
piece of art. To put your coding skills to the
test, we’re going to give you a limit of 100
lines of Python – no more.

You may have noticed that we haven’t
really tried to keep our code short in this
tutorial and quite a few of the functions we’ve
used can be shortened if needed.

The rules are:
Using only the turtle module, and no
more than 100 lines of Python (2 or 3,
your choice), you must draw a picture.
You may use any of the techniques here,
or any others you invent, copy, steal or
otherwise come across.
The only module you can use is the turtle
module. Any other import lines will be
deleted.
Pictures will be judged on artistic merit.
The judge’s decision is final.
Lines of comments are allowed (and
encouraged) and won’t be included in the
100 line count. Feel free to add
information to your program, and all
programs must be licenced under an OSI
approved open source licence. Preferably
the GPLv3, though you can use a
different one should you so choose.
In order to enter, send your entries to
ben@linuxvoice.com by 1 May 2014.
The winner will receive an exclusive
Linux Voice competition winner’s T-shirt.
These are not, and will not, be available
in the shops. The only way to get one is
to submit a winning entry to a Linux
Voice competition.

The artwork produced can be in any
category. Abstract, still life,
impressionism, cubeism. Sculpture is
probably out, but otherwise, anything
goes as long as it looks good.
Up to three entries per person will be
accepted.
You don’t have to buy a copy of Linux
Voice to be eligible. Feel free to pass on
the competition details to non LV
readers, and details will be posted on
www.linuxvoice.com.
Turtles don’t have to be called Jonney,
and you don’t have to limit yourself to a
single turtle.

To give you an example of what we’re
looking for, take a look at figure 5. This was
created with the following code (the
functions for the tree() and snowflake() as as
they’re given earlier in the tutorial, and not
repeated here, though if you wish to use them
in your example, you WILL have to include
them in your 100 lines). Although this picture
doesn’t make it look like it, the judge does like

colour, and garish entries will be looked upon
favourably.
jonney = turtle.Turtle()
jonney.speed(0)
jonney.left(90)
jonney.width(2)
draw_tree(128,6)
jonney.width(1)
jonney.penup()
jonney.goto(210,0)
for i in range(0, 10):
 for j in range(0,10):
 jonney.pendown()
 draw_snowflake((i+j)%3+1,2)
 jonney.penup()
 jonney.setheading(90)
 jonney.forward(30)
 jonney.setheading(270)
 jonney.forward(300)
 jonney.setheading(180)
 jonney.forward(50)
turtle.exitonclick()
Good luck, have fun, and remember that while
good artists borrow, great artisits steal!

Competition time

 It may be spring now, but the long, dark winter is still vivid in our memories. Help us forget
it with some uplifting artwork, and give yourself the opportunity to win clothing!

If you’re feeling really adventurous, you could write a
program that flips from the tree recursion to the fern
recursion at a certain depth. You can develop fractals
like this using different shapes. The key is to make
sure that, at the end of each run of the function, you
return the turtle to the same place it started from.

Fantastic Mr Fractal
There are loads of possible fractals you could draw,
and a quick web search will pull some up. One thing to
remember when programming fractals like the fern
and the tree is to make sure you always finish the
fuction at the same physical location the turtle started
it. Otherwise it’ll end up chaotic.

What we’ve covered in this tutorial may seem a bit
pointless, flippant even, but we’ve used exactly the
same programming techniques that are used in
normal software. By learning how to exploit them to
draw shapes, you hone your knowledge of how to
structure code, and this can only make you a better
programmer whatever language you use.

There are also a few cases where fractals
themselves are useful to programmers – for example,
in creating complex terrain in video games.

