'V TUTORIAL ADA LOVELACE

JULIET KEMP

Ada Lovelace was

the daughter of Lady
Annabella Byron, who

was deeply interested in
mathematics, and Lord
Byron. What would she
have thought of the person
who's produced Engine
code that draws a cat?

88

ADA LOVELACE AND THE

s ANALYTICAL ENGINE

Use the Linux Voice time machine to take a trip to Victorian
England, and visit one of the pioneers of the computer age.

ack in the 19th century, if you wanted to do
Boomplicated mathematical calculations you

had to do them by hand. To speed things up,
you could buy printed tables of specific calculations
such as logarithms — but as these too were
calculated by hand, they were full of errors.

Enter Charles Babbage, mathematician,
philosopher, engineer and inventor, who in the early
1820s designed a Difference Engine to do these
calculations automatically. The Difference Engine
could only add up, so it wasn't a general-purpose
‘computer’. It also never existed in Babbage's time,
although part of a prototype was constructed.
Babbage fell out with his engineer and ran out of
funding, so construction stalled around 1833 and was
finally abandoned in 1842.

Meanwhile, in 1834 Babbage began to design a
more complex machine called the Analytical Engine.
This would be able to add, subtract, multiply, and
divide, and it is the Analytical Engine that can be
considered as the first general-purpose computer. Or
could, if it had ever existed: Babbage built a few pieces
of prototype, and carried on refining the design until
his death in 1871, but never found funding for the full
thing. But despite its lack of concrete existence, other
mathematicians were interested in it, including Louis
Menebrae, and Ada Lovelace, who was already
corresponding with Babbage.

Augusta Ada King, Countess of Lovelace
Lovelace had had extensive mathematical training as
a child. She first met Babbage in 1833, aged 17, and
corresponded with him on mathematics and logic.
Around 1841 Luigi Menabrae wrote a ‘Sketch' of the
Analytical Engine, describing its operation and how
one might use it for a calculation. Lovelace was
asked to translate it into English; not only did she
do that, but at Babbage's request she added her
own extensive Notes, which went much further
than Menabrae had.
Lovelace probably saw more in the Analytical
Engine than Babbage himself had. She
suggests, for example that it might act upon
‘other things beside number’, and that it might be
possible to compose music by representing it in
terms of the Engine’s notation and operations. This
jump from a mathematical engine to one that could
act on symbols of any sort was visionary and well
ahead of her time.

www.linuxvoice.com

The Notes, importantly, contained the first
computer algorithm — a series of steps of operations
to solve a particular (in this case mathematical)
problem. This is what any computer program does,
and is what makes Ada the first computer
programmier, even if she was never able to run her
program on a real machine.

Installing the Analytical Engine

Although no physical Analytical Engine exists (the
Science Museum in London has a working replica of
the Difference engine), Fourmilab Switzerland have an
emulator available. It runs on Java, so all you need to
run it is a JDOK. Download the emulator object code
from www.fourmilab.ch/babbage/contents.html,
unzip it, and type java aes card.ae from that directory
to run the card file card.ae.

The emulator is the best guess, based on Babbage's
drawings and papers over the years, of how the
Engine would have worked. You can also use it as an
applet, for which you'll have to download and compile
the source code, but we couldn't easily get this to
compile. The applet gives a more visual interface.

Basic operations and a first program

The Analytical Engine consisted of the Mill (where
processing was done) and the Store (where numbers
and intermediate results were held). The Store had
1,000 registers (a far bigger memory than the first
‘real’ computers had), and the Mill could take in two
numbers, conduct an operation on them, and output a
single number. The Engine would also run a printing
device for output, to avoid errors in transcription. It
would be operated by punch cards, as were used in
Jacquard looms to weave complex patterns.

To use the emulator, then, we type in punch-card-
type instructions to be run one at a time. For ease, you
can put any number of cards into a single text file.

There are three types of punch cards:

@ Operation Cards Tell the Mill to add/subtract/
multiply/divide, and can also move the chain of cards
forwards or backwards (like a jump or loop
instruction).

B Number Cards Supply numbers to the Store as
necessary.

@ Variable cards Transfer values between the Mill and
the Store.

For engineering reasons Babbage intended these to
have three separate hoppers, but in the emulator they



go in a single stream. (This is also how Menabrea and
Lovelace expressed their example programs.) The
emulator ‘cards’ also allow some flexibility in format.
Numbers aren't right-justified and there's no need for
leading zeros, as there would be in a real punch card.

A number card looks like this:

N001 3
This sets column 1 in the Store (which has 0—999
columns) to the value 3.

The Mill has two Ingress Axes and an Egress Axis
(plus two auxiliary axes for division, which we'll look at
shortly). Once an operation is selected, the Mill will
keep doing that until another is selected. The
Operations cards are +, -, x or *, and / or the divison
sign, which all do what you'd expect.

Finally, the Variable Cards transfer things in and out
of the Mill:

L Transfer from Store to Mill Ingress Axis, leaving
Store column intact.

Z Transfer from Store to Mill Ingress Axis, zeroing
Store column.

S Transfer from Mill Egress Axis to Store column.

The letter is followed by a number specifying the Store
column.

A program on the Analytical Engine consists of a
chain of cards; each text line in an emulator file is a
single card. You submit a card chain to the Attendant,
who will check it for errors and ‘requests for actions’
(such as inserting manually generated loops and
subroutines). The chain of cards is then mounted on
the Engine and processed.

Let's give it a go! Since The Analytical Engine
doesn't lend itself to Hello World, we'll add 2 and 2.
Save this as card1.ae:

N000 2
N001 2
+

L000
Loo1
S002
P

This code puts 2 in column 0 of the Store, 2 in
column 1 of the Store, sets the operation to add,
transfers column 1 and then column 2 to the Ingress
Axes (Whereupon the operation will be applied), then
the result back to the Store in column 2. P prints the
result of the last operation to standard output. Run it
with java aes card1.ae to see what happens.

In fact, you could miss out the second line, and
transfer the value from Store column O twice, and it
will automatically be transferred into both Ingress
Axes. So this will work fine:

N000 2
+
. About to put values into Mill
L000
L000
S001
P
Replacing the first LOOO with Z000 won't work, as

TUTORIAL ADA LOVELACE V

L juliet@inspiral: ~/Downloads/aeclass
File Edit View Search Preferences Tabs Help
la x|

juliet@inspiral:~/Downloads/aeclass$ java aes test.ae
-38888
juliet@inspiral:~/Downloads/aeclass$ [:|

The Analytical Engine
emulator running a test
card (in the Vim window),
which subtracts 38388
from 0.

1. juliet@inspiral: ~/D

I
File Edit Tools Syntax Buffers Window Help
BRARS 9¢ B0 Ze

NOOO 38888

this zeros the Store column after transfer. This card
also includes a comment line. Comments begin with a
space or a dot in column 1 of the card.

To do more operations, you need to replace both
values on the Ingress Axes — they are discarded after
their use in a computation. Each time two arguments
go in, the current calcuation is applied.

Menabrae and simultaneous equations
Menabrae in his Sketch described an algorithm to
solve a pair of simultaneous equations. He divided the
process of solving the equations into a series of
individual operations, and tabulated them as
Analytical Engine operations. This is handily arranged
so that all the multiplications happen, then the
subtractions, then the divisions, minimising the
number of Operations cards.

Let's translate this into Analytical Engine code. See
the LV website for the whole thing; Il look at the
structure and a couple of operations here. Here are
our sample equations:
2x+y=7
3x-y=8

First, we put all the numbers (2, 1,7; 3,-1, 8) into the
Store. Then, following Menabrae’s calculations, cards
1-6 do all the multiplying and store the results. Cards
7-9 are subtractions. Then cards 10 and 11 generate
and print the results. (I've described each operation as
a'card as Lovelace does, although in the terms of the
emulator, each line is a card.)

Card 10 - gives x value
/
L013
L012
S015’
P
Card 11 - gives y value
L014
L012
S016’
P
If you're debugging, it's useful to print at every step.

Division is a little more complicated than other
operations. The format is roughly the same, but
dividing uses the Primed Egress Output. Specifically,

www.linuxvoice.com 89



'V TUTORIAL ADA LOVELACE

Ada Lovelace’s equation
for deriving the Bernoulli
numbers.

920

0 Ao+ AaBy + AyBy+ AgBs + ...+ B

120 — 1 2 20(20n— 1)(2n — 2
0 i o /:”;: v n(2n )(2n )‘)/”r
22n |1 2 2.3.1
20(2n — (20— 3)Y(2n — 3)(2n — 1)

2.3.45.6

. 2020 — 1)(2n — 2)
5 (G5B b () B!
220+ 1 2 2.3.4

(20— 3)(2n — 1)

(A4 VB¢ + ...+ DB,

_I_f;

the remainder from the operation goes on the regular
Egress Output, and the quotient (which is usually what
you want) goes on the Primed Egress Output. You get
at this by using an apostrophe. (Very large numbers
can also use the Primed Ingress Axis.) Run this with
java aes simeqcard.ae and you should get two
numbers output: 3 (the x value) and 1 (the y value).
The dividing shown works fine if you have integer
results or only need integer precision. But what if you
want a greater precision? The Analytical Engine uses
fixed point arithmetic: like a slide rule, it calculates only
in whole numbers, and it is the programmer’s
responsibility to keep track of decimal places. So there
is a “step up” and a “step down" operation, which shifts
the decimal point either to the right (stepping up x
times, or multiplying by 10x) or to the left (stepping
down, or dividing by 10x). We just need to change the
last two cards:
Card 10 - gives x value
/
L013
<5
L012
S015
P
Card 11 - gives y value
L014
<5
L012
S016’
P
We must put the decimal point back in to the output
ourselves, by manually dividing by 100,000 (105).

Ada and the Bernoulli numbers
The most interesting part of Ada Lovelace's notes on
the Menabrae paper describes how to calculate the
Bernoulli numbers (a set of numbers of deep interest
to theoretical mathematicians) using the Engine. Her
diagram of the process is too complicated to
reproduce here, but can be seen (with the rest of the
Notes) at www.fourmilab.ch/babbage/sketch.html. It
can, however, be translated into code for the Analytical
Engine emulator. Download the full code from the LV
website; here we'll look at the structure and ideas.

The non-zero Bernoulli numbers are usually referred
to by modern mathematicians as B2, B4, B, etc.

www.linuxvoice.com

However, Ada Lovelace refers to them as B1, B3, etc. |
will refer to them here by the modern numbers (so
subtract one if you're comparing with the Notes
directly). There are many ways to derive them, but the
equation that Lovelace uses is shown, left. Note that
the very last Bernoulli number has no accompanying
A-equation. What we're trying to calculate.

The important point is that from A2 onwards, each
following A-value takes the preceding one and
multiplies by another two terms. This makes it
possible to construct an iterative process to calculate
each succeeding term.

Onwards then to the code! Following Lovelace's
diagram, we will put in an already-calculated version
of B2, B4, and B6, and will calculate B8, sonis 4. As
Lovelace was keen to point out, in a ‘real’ calcuation
the Engine itself would have already calculated these
values on a previous round of the program, so they're
stored in a later register. The first section of the code,
then, sets up our numbers. Register 3 holds our n, and
registers 21—-23 the first 3 Bernoulli numbers,
multiplied by 10,000 (to allow for later dividing, as
discussed above).

Cards 1-6 calculate -1/2 x (2n - 1)/(2n + 1). The last three are

the most interesting:
Card4:(2n-1)/(2n+1)

/

L004

<5

L005

So11°
Card5:1/2*(2n-1)/(2n+1)Y

Lo11

L002

So11°
Card6:-1/2*(2n-1)/(2n+1) Y

L013

Lo11

S013

In Card 4, we step the first value up 5 places before
dividing, to avoid a rounding error. In Card 5, we take
the value stored in the previous step and overwrite it,
since it won't be needed again. In Card 6, we take
advantage of the fact that any unused register reads
0, to get a minus number by subtracting register 11
from zero. Effectively this switches the sign of the
value in step 5, but we store this result in register 13.

Card 7 subtracts one from n. This isn't used in the
code as it stands, but it is a notional counter to keep
track of whether we need to do another round of
calcuation. If we were calculating B2 (son = 1), then
card 7 would give the result 0, and we would be done.
Otherwise, it should add 1 to n and go round again.
Lovelace presupposed that the Analytical Engine
would have a way of detecting a specific result and
acting accordingly. (The emulator provides an
alternation card to do exactly this.)

Steps 8—10 produce (2n / 2) * B2 (the latter being
stored already). Card 11 adds the value from the first



stage (AQ), and card 12 again checks whether we're
finished yet.
The intriguing part is the next stage, cards 13—23.
This is the section that could be repeated almost
exactly for any stage of the process, however many
numbers you wanted to calculate. What you need to
calculate each time is:
2n.(2n-1).(2n-2).../2.3.4...
This is equivalent to
2n/2.(2n-1)/3.(2n-2)/4 ...
The first time we go through the loop, when
calculating A3, we can forget about 2n / 2 as we
already calculated that on card 9, and saved it in
location 011. So we work out 2n - 1 (card 13) and 2 +
1 (card 14), divide them and save the result (card 15;
note again that we step up 5 decimal places), and
then multiply it with AO and save this new value in
location 11. We then repeat the exercise, with cards
17-20, with (2n - 2) / 4, multiply it with the previous
result, and overwrite location 011 again. So, once
again, our A-value is stored in location 11.
In card 21, we multiply with our pre-saved value for
B4, then add the whole sequence up and save itin
location 13. Card 23 once again checks for 0.
At this point, all we need to do is to run cards 13—23
all over again. Because we saved 2n - 2 as our 'new’
2n, in location 6, applying cards 13—16 produces the
result (2n - 4)/ 5, just as we want. And the same again
for cards 17-20, with (2n - 5) / 6 multiplied in this time.
The only change is that in card 21, we have to grab B6
from its location rather than B4. Then we add it all
together again. In the code, these second-time-around
cards are labelled 13B-23B.
Card13:2n-1Y

L006

Loo1

S006
Card14:2+1Y

+

L002

Loo1

S007
Card15: (2n-1)/(2+1)

/

L006

<5

Loo7

S008’
Card16:(2n/2)*((2n-1)/3) Y

*

Lo11

Loo8

S011
Card17:2n-2Y

L006

Loo1

S006
Card18:3+1Y

+

TUTORIAL ADA LOVELACE V

Loo1
Loo7
S007
Card19:(2n-2)/4 Y
/
L006
<5
Loo7
S009’
Card20: (2n/2)*(2n-1)/3*(2n-2)/4 Y
*
L009
Lo11
>5
S011
Card 21: B(4) * [Card 20]
L022
Lo11
>5
S012
Card 22: AO + B2A2 + B4A4 Y
+
L012
L013
S013

There's only one new thing to notice, which is that in
cards 20 and 21 we have to step our result from the
multiplication back down by five decimal places, as
we're multiplying two stepped-up values together.

The final step is 24, in which we add our saved
value from step 23 to a zero register, to give our
calculated Bernoulli number. In actual fact, we should
be subtracting this from zero to get the sign of the
number correct, but Lovelace explicitly chose to ignore
this. Once the result is output, remember that you'll
also need to manually put in the decimal point, five
places to the left. So our result is -0.03341.

This is not far off the ‘official -0.033333333. Try
altering the accuracy of our calculations (remember
also to alter the accuracy of the stored Bernoulli
numbers) to improve the accuracy of the resuilt.

The Analytical Engine emulator also supports
looping code, using conditional and unconditional
cycle (backing) cards, and straightforward backing/
advancing cards; and an if/then clause with the
alternation card. See the website for more details, and
have a go at rewriting the provided code to loop over
one Bernoulli number at a time, up to a given n,
generating the result and storing it for the next loop
around. Remember that you'll need to calculate AO,
A2, and B2 separately, as here (cards 1-12), before
you can get into the real loop’ part. As the emulator is
Turing-complete you can also, as Lovelace suggested,
produce anything you can translate into Engine-
operations; or, as we now think of it, assembly
language. In theory you could even write a compiler in
Engine code... @

Juliet Kemp is a scary polymath, and is the author of

O'Reilly’s Linux System Administration Recipes.

www.linuxvoice.com

91



