V CODING EUCLID

LINUX

GRAHAM MORRISON

WHY DO THIS?

* You'll learn ancient
wisdom about numbers
and their factors.

* This is a great way
to see how Python

deals with Boolean
operations.

* While at the same
time, see the danger of
putting everything into
one line.

EUCLID'S ALGORITHM:

el RECURSION AND PYTHON

Learn a wonderfully simple algorithm that teaches as
much about Python as it does about mathematics.

e're about to go back to the year 300 BC. A
Wtime when much of the world looked like

the cover of the Led Zepplin album Houses
of the Holy. This is the time of Euclid; mathematician,
Greek geek and founder of all things geometrical.

The problem that Euclid's algorithm solves is easy
enough to understand: what is the largest common
divisor of two integers? Take the numbers 100 and 80,
for example: what's the largest number that divides
into both? You can make some assumptions about
what that number might look like — it's going to be
even and less that 40, obviously, and maybe more
than 20 — but to get any closer is going to require a
brute-force approach. Does 25 work? No. 30? Nope.
Looks like it might be 20 then, as this divides into both
and it doesn't look like there can be a higher number.

How about if the two numbers were 50 and 607 It's
not obvious what the commmon divisor might be for
these two, which introduces more guesswork. Or
what if the numbers were 123456 and 6543217

Adding and subtracting
For all the non-Euclids, the most basic algorithm may
simply halve the smallest number and then start
counting down, checking whether the new number
divides into both. It will work OK for small values, but
it's obviously a computationally expensive approach
that will become unrealistic very quickly. There has to
be a better way, and that's where Euclid comes in.
Euclid discovered that if you compare the smaller
number with the difference between the smaller and
the larger number, 50

“We're going to use Python,
for this, as it's insta,I,Ied on
virtually everything

compared to 10 in our
second example, and then
carried on doing the same
comparisons, smaller
compared against the

100

remainder of the previous
subtraction, until you could continue no further, the
previous remainder is the largest common divisor. For
the numbers 50 and 60, here's what happens:
60-50=10

50-10=40

40-10=30

30-10=20

20-10=10

10-10=0

So the largest common divisor between the numbers
50 and 60 is 10. Try it for yourself. It may get a little

www.linuxvoice.com

longwinded — you could easily see that the solution
was going to be 10 in the previous example, for
instance, but it always works regardless of how big
the numbers are you choose. The next question we
should be asking is, why? The solution is to do with
common divisors, the group of numbers that can be
equally divided into both of our values. The common
divisor of a (assuming a s largest number in the pair),
is also a common divisor of a - b (assuming b is the
second number). In the first line of our previous
calculation, that's the number 10 (60-50). 10 has its
own set of devisors — 1,2, 5 and 10, and this process
of subtraction doesn't change the set of common
divisors. This makes sense because when you
subtract the difference you are subtracting a number
that shares the common divisors of both numbers.

It might help if you think about this in terms of
reversing the calculations with addition:
10+10=20
20 shares the common divisors of 10, because we've
just doubled it.
20+10=30
Each addition sharing the same common factor that
we started with, until...
50+10=60
We now have our original two values, and you can see
where the common divisors came into the equation
and how the reversal of this reveals them.

The next job is to put this idea into code, and you
should be able to see that we're on the verge of
replacing our numbers with variables anyway, so we
just need to add some logic. We're going to use
Python for this example, as it's installed on virtually
everything — from the Raspberry Pi to Apple's OS X
and your Linux distribution. If you've not used the
Python interpreter before, just type python on the
command line and make sure you follow our syntax
and indentation exactly. Here's the Python code:
def euclid(a, b):

return b and euclid(b, a%b) or a
Woah! Those two lines of code do what we've just
spent 700 words trying to explain!

If this is your first foray into Python, we'll try to take
it as slowly as we can, starting off with what we've
just created. def euclid(a, b): defines a function called
euclid that takes two arguments: a and b. These
values are the same two values we were using before
in our explanation. If you've just typed this into Python,
you can type euclid(100,140) to execute the function.



EUCLID CODING V

euclid(100,140)

The interpreter will spit out the answer, which in this
case is 20. Now let's look at what the function is doing,
one word or character at a time. return is how
functions are halted when retuning results from an
evaluation. If this line were return 1234, the output
from the function would always be 1234. But that
doesn't include any evaluating, which in our example, is
done with the remainder of the line. The next character
is b, our second number, followed by the word and.

Boolean operators

In programming terms, and is a Boolean operator.
With most other programming languages, for an
evaluation to be true both sides of a Boolean and need
to be non-zero. (1 and 1) is true, for example, whereas
(0 and 1) is false, and those languages would typically
return a 1 for true and a O for false. Python is slightly
different in the way it handles return values because it
packs more features into a single operation. If the first
value is non-zero, it will return the second value from
the evaluation. If it's false, it will return the first. Here's
a simple function definition and the output from the
interpreter to show you what we mean:

>>> def andtest(a,b):

... returnaand b

>>> andtest(1,2)

2

>>> andltest(0,2)

0

This facility gives you the same output you get from
other languages — if both values are non-zero, you'll
get a non-zero value returned, which is effectively the
same as (1 and 1) = true. If either the first or the
second values are zero, these will be returned,
effectively making (3 and 0) = false.

But you get more because you get the value of the
second number for free, and this is how our code is
working. But there's another trick immediately
afterwards — recursion:
euclid(b, a%b) or a

The second argument to the first and evaluation
calls the function again from within itself. That's the
recursion part. The arguments for this second call of
the function are the second value itself and the
remainder of a division between the first and second
number. This remainder of a division, otherwise
known as a modulo operation, is a different method to
the one we outlined earlier. It's the same theory, only
made more efficient. This is because equal divisions
of the lower number into the higher number — such as
5into 28 — help us to fast forward a few steps without
losing the common divisor. 28%5=3, which is because
28 divided by 5 = 5, with a remainder of 3. You get the
same result as the remainder from the subtractions
we were doing earlier, only without all the effort:
28-5=23
23-5=18
18-5=13

13-5=8
8-5=3

But when will this recursion stop? When will the
function stop calling itself and start returning values
back up the chain? That's where the final or a comes
into play, and it's an evaluation connected to the earlier
and statement. In most programming languages, an
or evaluation will only return true if one or the other of
the arguments is true — so (1 or 0) would equal true,
but (0 or 0) would be false. In Python, you get better
value from the same statement because it returns the
first value if it's false and the second value if its not.
Here's another quick example from the interpreter:
>>> def ortest(a,b):
... returnaorb

>>> ortest(1,2)
1
>>> ortest(0,2)
2

If the evaluation of the recursively embedded
function returns zero, the and evaluates the value of a
against the value of b, effectively returning the next to
last value for b before the final evaluation returned 0.
That's exactly the same result we got when we first
worked out Euclid's algorithm manually, but it's quite
difficult to imagine. To make things clearer, here's
some pseudo code for what happens when we call
the function with the values of 60 and 50, showing
each recursive step on a line with a number and the
values Python is calculating. When a value is finally
returned, we change the line number with the returned
value inserted into the evaluation so you can see
what's happening and how we step back through
recursion to the final number:
a=60b=50
1: 60 and euclid(50, 10) or 60
2: 50 and euclid(10, 40) or 50
3: 40 and euclid(10, 30) or 40
4: 30 and euclid(10, 20) or 30
5: 20 and euclid(10, 10) or 20
6: 10 and euclid(10, 0) or 10 (RETURNS 10)
5:20 and 10 or 20 (RETURNS 10)
4:30 and 10 or 30 (RETURNS 10)
3: 40 and 10 or 40 (RETURNS 10)
2: 50 and 10 or 50 (RETURNS 10)
1: 60 and 10 or 60 (RETURNS 10)

You can test the logic of that comparison yourself
without the recursive element:
>>> def eval(a,b,c):
... returnaand b orc

>>> eval(20,10,20)
10

The end result is the product of thousands of years
of thought — a concise algorithm that performs a
useful operation, all on a single line, while at the same
time teaching a little about how Python maximises
functionality with its Boolean operations (and also
makes itself quite difficult to read in the process). @

www.linuxvoice.com 101



