
www.linuxvoice.com

CLOUDADMIN

64

Wouldn’t it be great if things worked
all the time? I mean, software
things, not people things. Gosh,

the world would be a better place if I worked
hardly at all. That’s why software was
invented isn’t it?

But things (including me) do not work all
the time. In fact, in the world of software
development, particularly in the new world
we now call devops, things are almost
perpetually operating in a mode of non-
functionality. What is very useful to know is
when, almost miraculously, there is a small
window of time when software works as it is
expected to. In a smart, switched-on world,
we can capture this moment so we can
work out what went wrong/right. This is the
world of continuous integration.

The name sounds like some sort of
maths purgatory. Continuous integration
was born out of the age that gave us agile
programming. The idea is pretty good, and
all but indispensable in the modern world
of group coding on complex software
properties. Commits made by coder #1
may be all well and good, and coder #2 is
well known for being cautious and testing
everything, but if they both land changes,
perhaps the two new parts don’t interact as
they should?

Breaking code is usually ridiculously easy,
even with parts that seem to be backwardly
compatible – it is often the difference
between the programmers’ perception of
how a particular block of code works, and
how it actually works, that leads to ripples of
wrongness in the edge cases.

Testing is therefore a good thing, and
continuous integration is a blessing.

At your services
In the early days of Agile, one system rose
head and shoulders above the others. Its
name was Hudson. Hudson was originally a
Sun project, but with the acquisition of Sun
assets by Oracle (remember them), there
were, erm, tensions. The project decided to
rename itself ‘Jenkins’. Oracle went off in a
huff and took its newly trademarked name
with it. Hudson still exists, but we’ll leave you
to decide who came off best from that spat.
Anyhow, the open source Jenkins project
became the de facto required tool for those
seeking CI nirvana.

Jenkins itself is a behemothic Java app
(aren’t they all) which requires a server to run

Jenkins
Testing code yourself? Why not get a minion to do that for you?

One of the Jenkins plugins can automatically
control lights to demonstrate build status
(picture by Dushan Hanuska).

If you are bored with butlers, you could always
replace the Jenkins logo with Chuck Norris.

Nick Veitch opens your eyes to the technology behind the cloud server revolution.
CLOUDADMIN

“Though it was originally imagined as a Java
testing tool, Jenkins now covers an impressive
range of languages and additional functionality.”

on. The basic principle is that you submit a
job (maybe triggered automatically by time,
or by a merge to a public repository) of code.
Jenkins then spins up a clean environment
for the code to work in, executes your tests
and spits out a report. Actually, that is pretty
much the least it will do. With an active and
productive community, Jenkins has grown
a legion of plugins to automate everything
from audit trails to uploaders for zubheim
(it’s a mobile app testing platform). There is
a list of plugins so long I couldn’t possibly
read them all without more gin than is
medically advisable.

The only major downside to Jenkins is
that it requires a bit of effort to get it working
the way you want. Though it was originally
imagined as a Java testing tool, Jenkins now
covers an impressive range of languages
and additional functionality, but almost all
of these require adding plugins and some
amount of configuration. The results of a

www.linuxvoice.com

CLOUDADMIN

65

Log on to the Travis website and you can see
the build queue and check out the console
output from your jobs. If only to find out what
an idiot you are.

well configured, well honed system are very
worth it though (you should definitely try
the Chuck Norris plugin, which replaces the
butler image on your reports with a random
image of a culturally significant martial arts
practitioner). As well as merely testing the
build and functionality of your software,
you can automate all sorts of other tasks
like publishing documentation or building
different versions. If you ever have the need
to build hierarchical projects, there is really
nowhere else to start.

Did anyone prophesise these people?
Due to the nature of its flexibility and all the
gubbins that can be bolted onto it, you may
find it takes quite a while to set Jenkins up
in a working fashion. For people who don’t
want to spend half their working day writing
new configs for Jenkins, there is Travis.

Travis is quite a bit simpler, but no less
capable. Part of this simplicity is due to the
fact that you don’t have to set up a server
to run Travis for you; it is a hosted service.
Actually, you can very much download the
open source code for Travis from github, but
why go to the trouble of building your own
service (the docs don’t really give you any
help on this either) when the hosted service
is free for open source projects. Travis
integrates really well with github. In fact,

that’s its primary purpose. And instead of
editing acres of config files, you can set up
everything that travis can do in a simple file
called travis.yml and add it to your github
repository. Register with the Travis website
(sign in with your github credentials, flick a
few switches to turn your repositories on
and Travis will do the rest. Every time you
push updates to the repository, Travis will
notice and add your jobs to the end of the
queue. Log in to the website and you can
check the queue and see the console output
of your jobs when they run. But there’s no
need, because Travis will send you plenty of
mails as well, telling you when builds have
succeeded or failed, and helpfully giving you
plenty of version info.

If you really want to know how easy it is to
configure Travis, here are a few examples;
firstly, a simple python project:
language: python
versions of python to use
python:
 - “3.3”
 - “2.7”
 - “2.6”
command to install dependencies, e.g. pip install -r
requirements.txt --use-mirrors
install:
 - “pip install markdown”
 - “pip install configobj”
command to run tests, e.g. python setup.py test
script: python mdconverter.py

This example declares the language,
optionally selects a few different versions
(they will execute as separate jobs) and
has the install command to add any
dependencies. The pip tool is used in this
case to install any additional modules
required by the Python file.

The final line is the script to run. In this
case, as our project is a simple linear
conversion tool, we just execute that, but
you could run a separate script to do a
number of tests, pass special parameters or

anything. For a C project, the Travis file can
be as simple as:
language: c

That’s because Travis assumes you are
using Automake and will default to running
./configure && make && make test, so you
can put any magic in your Makefile. There
is no real dependency management for C
projects, but that doesn’t stop you from
using the install section (or before_install:,
to run first) to fetch such things as you
might need. You are also not limited to using
GNU make. For example, to use cmake you
would just need to add something like :
before_script:
 - mkdir build
 - cd build
 - cmake ..
script: make

Currently the Travis CI environment is an
image of 64-bit Ubuntu 12.04, so you can do
pretty much whatever you need to with it.

If you have an open source project on
github and want a free, no fuss service,
Travis could fit the bill. Jenkins is better at
all-round automation – if you need to do
more than just build a project and run a
script, it is infinitely more powerful (with the
configuration headaches to match). But
whatever you choose, make sure you write
good tests! Continuous Integration as a
discipline means nothing if your tests don’t
make sure that things are working. Good
tests don’t end at “well, it compiled OK”, but
actually running meaningful tests with the
running code itself. Your code (and users)
will thank you for it.

CloudBees
Cloudbees is a hosted service that offers
free Jenkins capabilities, so you can get
pretty much everything you ever wanted
out of Jenkins, but without having to go
through the rigmarole of running your
own service. The cloudbees people should
know what they are doing too – the CTO is
Kohsuke Kawaguchi, the original founder
of the Jenkins project.

All the Jenkins service but without the
trouble of having one of your own.

The Travis build matrix view gives you
a nice overview of your status , but I

think I would rather have a lava lamp.

