
FAQ DOCKER

www.linuxvoice.com

DOCKER
The ultimate deployment tool, or just another tech fad?

Ok, let’s start with an easy 
one: what is Docker?
That’s simple: it’s a tool set for
managing deployments of

containers.

You’re stretching the definition 
of ‘simple’ a bit. Can you break 

it down for me a bit more? Let’s start 
by explaining what a container is.

OK. Remember that Linux is just
the kernel and the operating

system is this plus all the tools that sit
on top of it?

Yes, but I thought I got to ask 
the questions?
Sorry. A mild digression only. The
Linux kernel is the bit that sits on

top of the hardware and controls
access to the CPU, memory, and all the
other stuff that makes up your
computer. Normally, you can only use
one kernel on a computer at a time.

However, you can have many copies of
everything else. Containers are a way of
encapsulating this ‘everything else’ so
that they can share a kernel, and this
enables you to run multiple distros on
the same hardware.

Like having a dual-booting 
Linux system?
No. Using containers, you can run
multiple distros at the same time,

or, as is more common, using the same
distro multiple times.

Ah, so containers are a form of 
virtualisation, like Virtualbox 

or Qemu?
From a user’s perspective they’re
pretty similar. You have a host

OS, and within that host OS, you can
boot more versions of Linux. However,
at a technical level, they work in very
different ways. In virtualisation, you
have an application on the host OS that
simulates a CPU, then you have another
entire OS (including kernel) that runs on
this simulated CPU.

In containers, you only ever have one
kernel. It’s the same for the host
operating system and the other
operating systems that you run. The
containers have their own chunk of the
filesystem where they keep all their
data, and behave exactly like

independent OSes, but it all runs atop
the same kernel.

There are advantages and
disadvantages to this. Because they
run the same kernel, you can’t run
different operating systems like you can
with virtualisation. However, on the
other hand, because they don’t simulate
the CPU, the performance is better.

Great! Now I understand it, and 
we’ve still got a page to go. 

Shall we just stick a picture of Linus 
Torvalds in there and nip off to the 
pub early?

Not so fast! That’s containers. We
need to get onto Docker itself.

Oh right, yes. You said before 
that it’s a tool set for 

managing deployments on 
containers. I know what containers 
are, but why would you want to 
deploy them anywhere?

The big advantage of containers
is that you can encapsulate an

entire environment into a single block.
This enables developers to pull all the
libraries, data, and software into a
single container and distribute this. By
sending the container, rather than just
the software, it means they don’t need
to worry about dependencies, different
configurations, or anything like that.

60

“You could have a Docker 
image for OwnCloud and 
another for WordPress.”

BEN EVERARD



DOCKER FAQ

www.linuxvoice.com

So it’s a bit like statically 
compiling software, but 

including the whole OS?
I’d never thought of it like that, but
I suppose it is really.

Sounds awesome! What’s the 
inevitable downside?
Nothing major, but the containers
will take up more disk space than

just the plain software, and they have to
be updated separately to keep them
current with the latest bugfixes and
security patches.

So is Docker poised to become 
a universal replacement for 

apt-get, Yum, and all the other 
package managers?

Not really. No one’s suggesting
that containers are a sensible

way of installing all your regular
software. The main target market for
Docker is people providing services
across a network. For example, you
could have a Docker image for
OwnCloud, and another for WordPress.
They would each have their own
environments with everything installed,
set up, and ready to run.

By keeping everything contained in
this way, it’s really easy to customise
and deploy. A developer could pull the
Docker image to his or her development
machine, make any changes they like,
then push it to the server. They don’t
need to worry about the development
environment being different to the live
environment, because the whole
environment is included in the container.
It it doesn’t matter if it’s developed on
bleeding-edge Arch Linux, and deployed
on ultra-stable Centos, it will always run
the same. As well as making it easy to
develop, this should remove much of
the hassle of setting up test servers, or
migrating to a new environment.

The developer can also make any
changes they need to the environment
without worrying about how these may
affect other software running on the
server, because that software will be in
a separate container.

I almost understand your first 
point now: ‘a tool set for 

managing deployments of 
containers’. What sort of tools are 
typically in the set?

The main tool is (unsurprisingly)
called docker, and it has options

for getting and manipulating containers.
There’s a repository of containers that
have been made for common purposes.
You can grab these with:
docker pull <name>
Then, once you’ve got one installed, you
can run commands on it with:
docker run <image-name> <command>

That’s the basic use. There are also a
few options to help you manage the
containers. It’s complex technology, but
it’s surprisingly easy to use.

This all sounds so good, you 
must have found it really 

useful when setting up the Linux 
Voice web services.

Actually, no. We didn’t use
Docker. It is, as you say, really

good, but it’s also really new and still
under heavy development. The current
version is 0.8, and the people behind it
recommend that you don’t use it for
production systems until version 1.0 at
least. It’s not unstable, but it’s not yet as
mature as we like our server software
to be. Of course, some people are using
it on production machines. We’re just a
little conservative about such things.

Ah… so I should expect it about
the same time GNU/Hurd is

ready? Perhaps in time for Linux
Voice #100 (or Hurd Voice #1).

Less of your cheek! The first
release was in March 2013, so it’s

just one year old (happy Birthday
Docker!). In that time it’s come all the
way to version 0.9. The earliest plan we
heard about was for a release of
version 1.0 in October 2013, but by
November that year, it had been pushed
back to February 2014. At the time of
writing, there was still no sign of it, but
we don’t expect it to be much longer.
Of course, just because it’s called
version 1.0 and the team behind it say
that it’s production-ready doesn’t mean
it’s ready for everyone. Sysadmins are a
conservative species by nature, so we
don’t expect many people to start using
it in important services for a while yet.

I’m not a conservative 
sysadmin, I’m a reckless 

maverick programmer. How can I get 
started with Docker?

You won’t find it in many distros’
repositories just yet, but there are

packages for it for most major Linux
distributions at http://docs.docker.io/
en/latest/installation.

You said it ran on Linux 
containers. I have this friend 

who runs a commercial OS and won’t 
listen to reason. Can he run it?

Sort of. You can run Linux on
OS X or Windows in VirtualBox,

then run Docker in this. There are
instructions at the installation website
above. Of course, it’s far better just to
give your friend a talking to about the
advantages of open source systems. 

61

You can get a taste for Docker without the hassle of installing anything by trying out the project’s 
interactive tutorial at www.docker.io/gettingstarted.


