'V TUTORIAL GRACE HOPPER AND UNIVAC

LINUX

TUTORIAL

JULIET KEMP

Grace Hopper, who
studied mathematics and
physics at Harvard and
Vasser universities, at a
later UNIVAC in 1960. By
Unknown (Smithsonian
Institution) (Flickr: Grace
Hopper and UNIVAC)

82

GRACE HOPPER AND UNIVAC:
BEFORE THERE WAS COBOL

In the days before cheap silicon chips, valves ruled the roost - and
it took a special kind of brain to handle these magnificent beasts.

fter Babbage and the (never actually built)
AAnalytical Engine in the 19th century,

computer development languished for a
while. During the first half of the 20th century, various
analog computers were developed, but these solved
specific problems rather than being programmabile. In
1936, Alan Turing developed the idea of the ‘Universal
Machine', and the outbreak of World War Il shortly
afterwards was a driver for work on developing these
machines, including UNIVAC, famously worked on by
Grace Hopper.

Grace Hopper, born in New York in 1906, was an
associate professor of mathematics at Vassar when
WWII broke out. Volunteering for the US Navy Reserve,
she was assigned to the Bureau of Ships Computation
Project, where she worked on the Harvard Mark |
project (a calculating machine used in the war effort),
from 1944—9, co-authoring several papers.

In 1949, she moved to the Eckert-Mauchly
Computer Corporation (later acquired by Remington
Rand, and later still by Unisys), and joined the UNIVAC
team. UNIVAC, which first ran in 1951, was the second
commercially available computer in the US, and the
first designed for business and admin rather than for
scientific use. That meant that it was intended to
execute many simple calculations rapidly, rather than
performing fewer complex calculations. Punch-card
calculating machines already existed, but crucially,

www.linuxvoice.com

UNIVAC was programmable. The first customers
included the US Census Bureau and the US Air Force
(who had the first on-site installation, in 1952). In
1952, as a promotional stunt, they worked with CBS to
have UNIVAC predict the result of the 1952 US
presidential election. It correctly (and quickly!)
predicted an Eisenhower win, beating out the pollsters
who had gone for Stevenson. So let's take a look at
what it was and what it was doing.

UNIVAC: mercury and diodes

UNIVAC weighed about 13 tons, and needed a whole
garage-sized room to itself, with a complicated water
cooling system and fans. It had 10 UNISERVO tape
drives for input and output, 5,200 electron (vacuum)
tubes, 18,000 diodes, and a 1,000 word memory
(more on that in a moment); it required about 125kW
of power to run. (A modern laptop uses around
0.03kW. It also required a lot of maintenance;
replacing diodes, contacts and tubes, not to mention
keeping the cooling systems running.

UNIVAC's memory and operational registers were
both based on mercury delay lines. The main memory
consisted of seven ‘long tanks', each containing
eighteen ten-word channels. Each channel was a
column of mercury with quartz crystals at each end,
and held 910 bits (840 bits for the words and 70 for
the spaces between each word). The main clock (at
2.25MHz) was in sync with the carrier wave of the
column (11.25MHz) and acted as the timer for all
UNIVAC operations.

To store data in a channel, the sending crystal (at
one end of the channel) was vibrated with the data
bits (ones and zeros) of the word. The rate was
controlled by the main clock, then the signal was
mixed with the carrier wave. The whole signal would
move through the column to the receiving crystal,
where a bunch of circuitry picked it up, amplified it,
analysed it, and sent it back to the sending crystal for
another trip through the mercury. So the data was
constantly rotating through the mercury, which meant
that you could only access a word when it popped out
at the receiving crystal end. The average access time
for a word was 222 microseconds, so a fair amount of
UNIVAC's time involved waiting for word access, with
obvious practical programming implications.

You may have noticed that seven lots of 18
channels gives 126 channels of 10 words each; so
why only 1,000 words of memory? The remaining 26

ACE HOPPER AND UNIVAC TUTORIAL V

channels were used for input and output buffering, for
the register, and for the vitally important mercury
temperature control. The mercury had to be at an
exact operating temperature for the correct transit
time and to avoid bit creep; from a cold start, it could
be up to half an hour before the tanks were able to
hold memory.

Control and computation operations were also run
via mercury delay lines, each tank working with a
single 12-character word. This made access much
quicker, and they also had distribution delay lines to
allow multi-bit access to characters. There were four
types of register:

@ Four Input/Output Synchronizers, used for the 60
word read/write buffers.

B Three Control registers, used for controlling
program instruction flow.

B One two-word register (V) used as a holding area
during a two-word move.

B Several of these registers were duplicated, then
compared bit-by-bit, to increase accuracy.

Finally, it had an operator’s console and an
oscilloscope connected. The console had switches
that allowed any of the memory locations to be
displayed and monitored on the oscilloscope. A
typewriter and printer were also connected for output.

Programming UNIVAC
UNIVAC had quite a big instruction set, which covered
transferring the contents of memory into registers,
moving the contents of registers around, performing
operations, jumping to specific memory addresses,
shifting contents of registers a given number of digits,
and controlling input/output. The full list (with
explanations) is available at https://wiki.cc.gatech.
edu/folklore/index.php/UNIVAC_|_Instruction_Set.
Unfortunately there's no Linux-compatible emulator
(see boxout), but here is a small example, with
comments:
L00 101

loads contents of memory register 101 into register A.
A00 102

loads contents of register 102 into register X, adds X to A.
€00 103

stores contents of register A into register 103, clears A.
P00 103

print contents of register 103 on the console printer.
If you read last month'’s article on Ada Lovelace and
the Analytical Engine, this may look familiar. The
instructions (L, A, P) are made up to 3 digits with zero
padding. So if register 107 contains the value 2, and
register 102 contains the value 3, this willadd 2 to 3,
store 5 in register 103, and output 5 to the console.

To run this program, it would have been typed onto
a program tape as a series of numeric words
(‘translated from the programmer's mnemonics given
here). The tape (and any needed data tapes) would be
latched onto the UNISERVOs, and the operator would
manually set various options and begin the booting
process from the console. The first 60 instructions

UNIVAC | at the Franklin
Imstitute, Philadelphia.

would be read into the input buffer, then transferred

into memory. The operator would then set the

machine back into ‘normal’ mode, hit the Start Bar,

and UNIVAC would begin executing the instructions

from memory, beginning with the first block. So the

programmer would have to make sure that from then

on in, everything that the program needed to do

(including reading in more instructions or data from

tape) was referenced in the program itself. The

operator's role would be limited (at least in theory!) to

replacing tape reels as indicated by console

messages, and rescuing any minor problems such as

a dropped tape loop. Breakpoints could be set in the

code (instruction) to aid recovery from problems.
Here's a longer example from the 1954 UNIVAC

operating manual. The far-left number is the memory

register that contains the instruction. Instructions

were saved in memory in pairs, as shown, with the

left-hand six-digit instruction run first, then the

right-hand six-digit instruction. In this example,

registers 100—999 contain a set of numbers, and the

code adds them all together.

000 CO00099 CO00099

001 B00099 A00100

002 C00099 BO00 001

003 L00007 Q00006

004 A00008 CO00 001

005 000000 UO0O 001

006 900000 UO00 001

007 B00099 A00999

008 000000 000001

Line by line, here's how that code works:

000 C 099 stores register A into memory and zeroes

it; so repeating this twice zeros register 099.

001 B 099 loads register 099 into register A; A 100

loads register 100 into register Z, then adds it to

register A.

002 C 099 stores register A (now containing A+Z) into

register 099, and zeroes register A. B 001 loads the

contents of register 001 into register A. The contents

of register 001 are the program instructions in step

00T; so we are preparing to alter the instructions

themselves.

003 L 007 loads the contents of register 007 (see step

007 below) into both register L and register X. Q 006

www.linuxvoice.com 83

'V TUTORIAL GRACE HOPPER AND UNIVAC

Grace Hopper remains

a source of quotable
quotes, our favourite
being: “It's easier to ask
forgiveness than it it to get
permission.”

84

!

|
EOLEE R W
[UEYE |

checks whether register L is equivalent to register A; if
S0, it jumps to register 006 (that is, step 006).

004 A 008 loads the contents of register 008 into
register X, and adds it to register A. As register A
currently holds the instruction from register 001, and
register 008 holds (effectively) a single 1, this alters
the instruction from register 001 to read BOO 099 A0O
107 instead of BOO 099 A0O 101. In other words, next
time we run step 001 we'll add the contents of the
next register in the list to our running total. C 001
dumps the contents of register A back into register
001, so we've edited the program on the fly.

005 The LHI is blank; the RHI (U 00T) is an
unconditional jump back to register 001, ready to add
the next number in the list.

006: This simply stops the computer. (Remember
from 003: we jump here if the program is finished.)
007 B 099 A 999. This instruction is never actually run.
It is used in 003 to check against register A. If register
A looks like this at step 003, then we have added the

final number (in register 999) and our program is done.

003 will then jump to 006 and the program ends.
008 End of program.

Fundamentally, this is a for loop that sums each
element in an array. But UNIVAC programmers had to
physically rewrite the instruction inside the loop each
time.

One apparently excellent emulator for UNIVAC does
exist. It's by Peter Zilahy Ingerman and is described at
www.ingerman.org/niche.htm#UNIVAC.
Unfortunately it's written in Visual Basic 6 and only
runs on Windows. The download link on that page
doesn't work, but it can be obtained by contacting the
author on the given email address. The code above
should run on it, but as it's Windows we haven't been
able to test it.

www.linuxvoice.com

Grace Hopper created the first operational compiler,
in 1952, while working on the UNIVAC project. Initially,
no one believed her. ‘I had a running compiler and
nobody would touch it," she said later. “They told me
computers could only do arithmetic.” In fact, the A-O
system was more like what we would today call a
loader or a linker than a modern ‘compiler’. For A-0,
Hopper transferred all her subroutines to tape, each
identified with a call number, so that UNIVAC could
find it. She then wrote down the call numbers, and any
arguments, and this was converted into machine
code to be run directly. Effectively, A-O allowed the
programmer to reuse code and to write in a more
human-readable way, and get the machine to do more
of the work.

Programming with A-0
The next versions were A-T and A-2, with A-2 the first
compiler to be in more general use. | found a short
paper from a 1954 MIT course, which Hopper also
tutored. In it she describes A-2 as handling two types
of subroutine: static ones (stored in memory or on
tape, either from a general library or specific to the
problem) and dynamic ones. Dynamic subroutines
could be generated from a ‘skeleton’ stored subroutine
and some specific parameters, or could be generated
to handle data. A-2 had four phases of operation:
B Expands/translates the provided code, adding in
data such as call-numbers and operation numbers. (In
later compilers this translated from ‘code’ into
‘machine code'))
B Divides the result from phase 1 into segments
which can be processed in a single storage load, and
creates references to each subroutine.
B Creates the jJump instructions needed to complete
the necessary jumps (for example between storage
loads and subroutines) required by the result of phase.
After this phase, you have a complete description of
the program, but not a complete program that can be
run sequentially.
B Main compilation. All subroutines are read in and
transformed as necessary from ‘general’ to ‘'specific’
(so any parameters are included), all jumps, reads, and
writes are included, and a complete program is
generated which can now be run as-is.

(If you check out the PDF course notes in the
resources, there are some very cute line drawings
illustrating the four phases.)

FLOW-MATIC & English-language programming
A couple of iterations later, Hopper and her team
produced FLOW-MATIC, which was the first English-
language-like data processing language. (Meanwhile,
FORTRAN was completed at IBM in 1957, and is
generally agreed to be the first complete compiler.)
Here's a quick sample of FLOW-MATIC code, taken
from the FLOW-MATIC product brochure).
(0) INPUT INVENTORY FILE-A PRICE FILE-B ; OUTPUT
PRICED-INV FILE-C UNPRICED-INV
FILE-D ; HSPD .

GRACE HOPPER AND UNIVAC TUTORIAL V

(1) COMPARE PRODUCT-NO (A) WITH PRODUCT-NO (B) ; IF
GREATER GO TO OPERATION 10 ;
IF EQUAL GO TO OPERATION 5 ; OTHERWISE GO TO
OPERATION 2 .
(2) TRANSFERATOD .
(3) WRITE-ITEMD .
(4) JUMP TO OPERATION 8 .
(5) TRANSFERATOC.
(6) MOVE UNIT-PRICE (B) TO UNIT-PRICE (C) .
(7) WRITE-ITEM C .
(8) READ-ITEM A ; IF END OF DATA GO TO OPERATION 14 .
(9) JUMP TO OPERATION 1.
(10) READ-ITEM B ; IF END OF DATA GO TO OPERATION 12.
(11) JUMP TO OPERATION 1.
(12) SET OPERATION 9 TO GO TO OPERATION 2.
(13) JUMP TO OPERATION 2.
(14) TEST PRODUCT-NO (B) AGAINST 277777777777 ; IF EQUAL
GO TO OPERATION 16 ;
OTHERWISE GO TO OPERATION 15 .
(15) REWIND B .
(16) CLOSE-OUT FILESC;D.
(17) STOP . (END)

The PRODUCT-NO and UNIT-PRICE fields would
have been defined separately, in the DIRECTORY
section of the program. This is just the executable
part. Let's step through it:

(0) Load in two input files (A is inventory, B is price),
and set two output files (C is priced inventory, D is
unpriced).

(1) The key part: this compares the current product
number from file A with that from file B:

If they match, then product 1 has a matching price,
and we go to section (5)—(9).

If Ais greater, we go to section (10)—(13).

If Bis greater, we go to section (2)—(4).

(2)—(4) this implies that we have an unpriced product
(product 1, for example, exists on list A but on list B
the lowest number is product 2). We write it out on the
unpriced file D. We then jump to (8), read in the next
item A and return to (1).

(5)—(9) ltems A and B match; the product has a price.
We write it, together with its price, on file C. Then we
read in the next item A and go back to (1).

(10)—(13) Item A is greater than item B. Read in the
next item B, if there is an item B, and go back to (1).
Note that the result of (5)-(9) (a matching pair) will be
to read in the next A product but not the next B
product, so this balances that out. If we have run out
of B data, we rewrite (9) so that all the rest of the
products go directly to the unpriced output file.
(14)-(16): close the output files and/or rewind input
file B; stop the program.

So this would generate a list of priced items with
their prices, and a list of unpriced items. As you can
see, FLOW-MATIC was squarely aimed at the
business market.

When is a bug not a bug?
Famously, Grace Hopper popularised the term
‘debugging” about computer programs, after an error

More resources

My great thanks to Allan Reiter, whose page at
http://univac1.0catch.com is invaluable for technical
details of UNIVAC operation. Check it out for

much more detailed info and plenty of photos and
diagrams.

There are some other wonderful UNIVAC resources
available online:

® The 1951 ‘Introduction to UNIVAC' leaflet.

® Remington Rand UNIVAC advertising film from
1950-2.

= Notes from the 1954 MIT special program on
Digital Computers (see A-0 section above).

® Bitsavers have a whole bunch of documents from
the early days of UNIVAC. These include operating
manuals, programming references, and the course
materials for an Advanced Programming Course.

@ The FLOW-MATIC brochure from 1957 (includes the
FLOW-MATIC sample code above.

while working on the Mark Il in 1947 was tracked
down to an actual bug (a moth) stuck in a relay. The
term "bug” had been used before in engineering, but
Hopper brought it into popularity.

AUNIVAC at US Steel in Indiana, on the other hand,
had a bug that was in fact a fish; its cooling system,
which used water from Lake Michigan, got its intake
blocked by a fish and thereby overheated.

COBOL and later
After FLOW-MATIC came COBOL, which Hopper and
her team designed from 1959 onwards. COBOL is still
in use today, with the 2002 update including OO
features, and the compiler GNU Cobol (formerly
OpenCOBOL) is available

forLinux it plenty o “Grace Hopper created the first
svalabie conoLwes Operational compiler while
working on the UNIVAC project.

intended to be "

comprehensible by
non-programmers, hence
its use of English-like syntax and structure. Modern
COBOL is still recognisably the same language, and
indeed recognisably inherits from FLOW-MATIC. (The
first COBOL compiler was itself written in FLOW-
MATIC, and was the first compiler to be written in a
high-level language.)

Grace Hopper moved back into the Navy in the late
1960s. She was on active duty for several years
beyond mandatory retirement with special approval of
Congress, eventually retiring in 1986, at the age of 79,
as a Rear Admiral. She continued to lecture widely on
early computing and other aspects of user-friendly
computing until she died in 1992.

Juliet Kemp is a scary polymath, and is the author of

O'Reilly’s Linux System Administration Recipes.

www.linuxvoice.com 85

