
CODING CONCEPTS

www.linuxvoice.com

TUTORIAL

We’re used to thinking of secure
communications in terms of encryption. If
an attacker can’t crack the encryption then

they can’t get into the data, right? Wrong. The
encryption method is only one of the many parts that
make up a secure exchange.

One chink in the electronic armour is the key
exchange. That is, the process by which the two
parties decide on which key to use for the symmetric
encryption. They both have to know the key, so this
has to travel between them in order to communicate.
However, an attacker may be listening in, and the key
has to be sent in such a way as to stop them being
able to find it out.

The simplest way to agree on a key is to use public
key cryptography. In this, one party can simply
generate a symmetric key, encrypt it with the other’s
public key, and send it. Then both parties can
communicate using the symmetric key.

It’s a very simple method, and it works fine. Anyone
who intercepts the message won’t be able to read it
because they don’t have the private key to decrypt the
message. The only flaw is the fact that the symmetric
keys are used over a long period of time, and if one is
compromised once, all previous messages can be
decrypted. This is a particular problem when
organisations like GCHQ and the NSA are intercepting
and storing huge amounts of data.

Stopping this is known as Perfect Forward Secrecy
(or PFS), and is possible using the Diffie-Hellman key

exchange algorithm, which doesn’t use public keys.
There’s no long-term data that could be compromised
that could be used to decrypt past data wholesale.

Perfect security
The Diffie-Hellman algorithm involves three parts that
are combined to make the key. It also needs a method
of combining them that is a form of encryption, which
has the basic property that (s + a) + b is the same as
(s + b) + a. The ‘+’ symbol is used here generically to
mean any secure form of combination. By secure, we
mean that if you know s and (s+a), you can’t use that
to work out a.

If Alice wants to communicate with Bob, and GCHQ
are trying to listen in, Alice starts by sending Bob a
random number that we’ll call s. This is sent in plain
text, so everyone can read it. Then, both Alice and Bob
make up their own random numbers. We’ll call these a
and b respectively. They don’t send them, but combine
them with s first. Alice then sends (s + a) to Bob, and
Bob replies with (s + b).

Now they have these, Alice can calculate (s + a) + b,
while Bob can calculate (s + b) + a. As we’ve said,
these are equal, so they’re used as the symmetric key.

GCHQ knows a, (s + a) and (s + b) , but has no way
of calculating (s + a) + b provided we have picked a
suitably secure method for combining the numbers.
As with all encryption methods, if a suitably powerful
computer could be found, then it would be possible to
subject this to a brute-force to find the key. However,
this would have to be done separately for each run of
Diffie-Hellman rather than just once, making it a far
less attractive proposition.

The method that Diffie and Hellman used to
combine s, a and b is the fact that for a prime number
(p), and a primitive root (g), (g mod p) mod p = (g
mod p) mod b. Therefore, both p and g are sent in
plain text first, then (s + a) was g mod p and (s + b)
was g mod p.

A quantum of security
Diffie-Hellman requires us to have a method of
combining the numbers that can’t be broken. While
there are several options with no known weaknesses,
it’s possible that a way will be found to decompose
the messages (s + a) and (s + b), and this would allow
an attacker to break the encryption.

Instead of relying on mathematical properties to
allow you to transmit the data securely, you could rely

KEY EXCHANGE: THE
SCIENCE OF SECURITY
Maths and physics – two ways of keeping your data
safe. Read on, bold explorer…BEN EVERARD

WHY DO THIS?
• Understand advanced

cyptography techniques.
• Beat GCHQ (and the CIA

as well).
• Gives you an excuse

to use the laser beams
that you’re stuck to your
sharks’ heads.

100

GCHQ can listen in on
steps 1, 2 and 3, but they
won’t be able to find out
the key.

Alice
a=7

Step 4: 9 mod 23 = 4
Key = 4

Bob
b=10

Step 4: 6 mod 23 = 4
Key = 4

Step 1: p=23, g=18

Step 2 : (g mod p) = 9

Step 3: (g mod p) = 6

CONCEPTS CODING

www.linuxvoice.com 101

on physical properties. If our key exchange is
protected by the laws of physics, we can be far more
confident that GCHQ isn’t listening in.

This is possible using the Quantum Key Distribution
algorithm. In this method, each bit of information is
encoded as a single photon sent from Alice to Bob.
The data is in the polarisation. If you think of the light
wave travelling through space, the wave could be
moving up and down, side to side, or at any other
orientation. This orientation of the wave is its
polarisation

It is possible to measure the polarisation, but not
precisely. Because of quantum indeterminacy, you
can only measure it against two perpendicular axes.
For example, if you set your axes as vertical and
horizontal (0 and 90 degrees), and a photon is
polarised at 0 degrees, you’ll get a reading as vertical,
and likewise for a horizontal photon. However, if a
photon has a polarisation of 45 degrees, there’s a 50%
chance you’ll get a reading of vertical and a 50%
chance of horizontal.

What’s more, by reading the state of the photon, you
destroy it.

Using these two properties, Charles Bennet and
Gilles Brassard developed a system to send a key so
that it can’t be intercepted. Again, we’ll look at an
example where Alice sends a key to Bob and GCHQ
tries to listen in.

Alice has a photon transmitter that can send
polarised photons in four different orientations: 0
degrees, 45 degrees, 90 degrees and 135 degrees.
These are in two groups: 0 and 90 are vertical, while
45 and 135 are diagonal. For each photon, she
randomly selects to use either vertical or diagonal. In
vertical, 0 degrees represents a binary 0 and 90
degrees represents a binary 1. In diagonal, 45 is 0 and

90 is 1. She then sends a series of 0s and 1s with
photons and switches between vertical and diagonal
at random.

Bob has receiving equipment that he can set up at
vertical and diagonal orientations as well. However, if
he is set up vertical while Alice is set up diagonal, he
will receive the photon incorrectly, and likewise if he is
diagonal and Alice is vertical. As Alice sends her
stream of ones and zeros, Bob also randomly
changes between vertical and diagonal.

Keep GCHQ in the dark
After Alice has sent a long enough string of bits, she
sends Bob a list of what orientations she was using
for which bits. Bob compares this to how he had his
receiving equipment set up. On average, they should
have had the same
orientation for half of the
bits, so Bob replies by
saying which bits he was
correctly set up for. Both of
these messages can go
unencrypted since they are
no use to an attacker. Alice and Bob can then use the
values of bits that Bob received correctly as the key.

GCHQ can’t intercept the photons since they don’t
know what orientation Alice is as she sends them.

For example, If Alice is vertical, and GCHQ intercept
the photon, they have to guess between vertical and
diagonal. If they are diagonal, then there’s a 50%
chance that they will read it incorrectly. In reading in,
they destroy the original photon, so they have to
create a new one to send to Bob. They have no way of
knowing if they read the original one correctly, so they
can’t be sure either what value it is or what orientation
Alice was in. They may get lucky on a few photons,
but if they’re building up a key of 512 bits, then the
errors will quickly mount up.

This might sound fanciful, but there are already
some implementations, and April 2014 marks the
tenth anniversary of the first bank transfer protected
by Quantum Key Distribution (see www.secoqc.net/
downloads/pressrelease/Banktransfer_english.pdf
for details).

“Quantum Key Distribution
sounds fanciful, but there are
already some implementations.”

To see if you’re using PFS, look at the technical details
of the certificate. If you see ECDHE (Eliptic Curve Diffie
Hellman Ephemeral) or DHE (Diffie Hellman Ephemeral),
then you have perfect forward security.

Public and symmetric key encryption
There are two different types of
encryption: public key and symmetric
key. In public key encryption, everyone
has two keys, one public, one private.
The public key is made public, while
the private key is known only to that
user. When someone wants to send
data to the user, they can encrypt it
with the public key, and then it’s only
decryptable with the private key.

In symmetric key encryption
(sometimes known as private key

encryption), there is just one key to
encrypt and decrypt the message.

Symmetric key encryption is
much faster the public key, and so is
used for almost all purposes except
authentication. SSH, for example,
will use public key encryption to
make sure that the server you’re
communicating with is really who it
says it is, and once that’s done it will
negotiate a symmetric key using one
of these key distribution algorithms.

