
FEATURE CODE FOR ALL

www.linuxvoice.com36

I t wasn’t long ago that programmers
were viewed by the general public
as strange wizards who spent

hours alone every day, tapping
incomprehensible gobbledygook into
black boxes on the screen. But in recent
years, the perception of programming
as a hobby (and profession) has
changed enormously. Today it’s cool to
hack the Raspberry Pi. Today it’s trendy
to write software for iOS and Android.

Today you can tell someone at the pub
that you enjoy programming, and not be
looked at like you’ve just started
speaking Tagalog.

We’re all hackers on the Linux Voice
team, so we support every effort to
inspire people to code. It’s not all
boring, complicated and alien like some
people claim; coding can be fun,
stimulating and useful for developing
future skills.

With this in mind, we wanted to make
this issue’s cover feature all about
coding. But not just as a generic
introduction to a language or platform
– no, we wanted to show you how to do
useful things. So over the next nine
pages we have three projects explaining
how to make real-world desktop, mobile
phone and command line applications.
As you’ll see, coding is for everyone, and
you can code for any platform.

CODE FOR ALL
Programming isn’t just the domain of übergeeks – in the Year of
Code, everyone can get involved. Follow our guides and create

programs for the desktop, mobile phone and command line.

FEATURE CODE FOR ALL

CODE FOR ALL FEATURE

www.linuxvoice.com 37

To kick off, we’re going to use Python, because
it’s an excellent all-round language which
combines highly readable code with oodles of

advanced features. Python code tends to be self-
explanatory, so it’s a great way to dip your feet into
programming. We’ll start here with a quick overview of
the language; if you’re already familiar with Python, you
may want to quickly skim over this and then turn over
the page, where we start using it in our application.

A Python primer
Python is installed by default in most major
distributions, and it’s an interpreted language, so you
don’t need to compile your code before running it. In
the following examples, save the source code in plain
text format as test.py. Then run it like so:
python test.py

Let’s start with a very simple program:
name = “Linux Voice”
print name + “ is the best Linux mag”

This demonstrates two aspects of the language:
variables and output. In the first line, we create a new
variable (like a storage space) called name – in
Python, you don’t need to explicitly state the type of a
variable when you create it. In the second line, we print
the contents of the variable to the screen, along with
another string of characters. Dead easy, right?

Let’s look at numeric variables:
x = 1
while x < 10:
 print “x is”, x
 x = x + 1
print “Finished!”

Here we declare the x variable to contain 1 at the
start, and then begin a loop. While the contents of x
are less than 10, we print the contents, and add one to
x. It’s important to note the indentation here: in Python,
you use tabs to say which lines belong to a chunk of
code. Here we say that the print and x = x + 1 lines
belong in the while loop, because they’re indented. If
you removed the tab from the x = x + 1 line, the
contents of x would never be incremented in the loop,
so the loop would go on forever.

When the loop has finished, the program continues,
so no indentation is required. (If you have loops inside
loops, you will have multiple levels of indentation.)
Next, let’s move on to input and comparisons:
x = input(“Enter a number: “)
if x == 1:
 print “You entered 1”
else:
 print “That wasn’t 1”

Here we have our x variable again, and we call
Python’s in-built input routine, which displays the

specified text in quotes. Then we ask Python: if the
contents of x are 1 after the input, print one thing, and
if the contents are not 1, (shown in the code as the
else statement) print something else. Why the if x ==
1 though – why the double equals signs? Well, it’s just
to make a very clear distinction from x = 1 (a single
equals sign), which stores a number or line of text
within a variable.

Funky functions
Next, we’ll dip our toes into functions. These are
self-contained chunks of code that you can use to
build bigger programs. You can re-use them with
different parameters, to keep your code small and
easy to understand. For instance:
def multiplier(a, b):
 print a, “multiplied by”, b, “is: “
 print a * b
multiplier(6, 7)
multiplier(10, 20)
multiplier(211, 2352)

Here, we ‘def’ine a function called multiplier, which
receives two numbers from the calling program, and
stores them in the variables a and b. This function
then prints out the result of multiplication (using the *
operator). Note the tab indention again here, and also
note that this function is defined at the start of the
program, but it isn’t executed immediately – Python
starts execution in the non-indented part.

So we can call our
multiplier function with
different numbers, as
shown in the three lines at
the bottom of the code.
This is a trivial example
(you could just do the
multiplications in the main code), but it shows how
you can build up programs from self-contained units.

So, that’s the basics of Python covered – now turn
the page and let’s do something useful.

Many good text editors
include syntax highlighting,
to make it easier to read
code – here’s Nano, for
example.

Desktop apps with Python
First step: building the required skills.

“Python is installed by
default in most major
Linux distributions.”

FEATURE CODE FOR ALL

www.linuxvoice.com38

Here it is: our funky mega skillo web browser, which we can restrict to wherever we want,
written in just 35 lines of Python. How cool is that?

A kiosk-like web browser
Write your own locked-down, ultra secure web browser.

W ith our Python skills freshly prepped, let’s
make a real application. Here we’re going
to create a simple, and locked-down web

browser than can only visit certain web pages and not
escape onto the big, bad web. Why would you do this?
Well, let’s say you’re setting up a web terminal for a
school, shop or museum, and you want to restrict
access to certain places. You could use a normal web
browser, load it up with kiosk-like extensions and
filtering proxies and hope that it’s secure, but clever
users may still be able to break out of the restrictions
and cause trouble.

With our browser, we have just the bare essentials.
And even if setting up a web kiosk isn’t high on your
list of things to do, it’s well worth following this tutorial
to see how a simple web browser is implemented.

The code
Here it is – a whole web browser, contained within 35
lines of Python. You probably don’t want to type this
out by hand, so grab it from www.linuxvoice.com/
code/microbrowser.py. This browser is set up to view
the Debian website at www.debian.org and nothing
else, but you can of course change that.
import gtk, webkit

def goback(button):
 view.go_back()

def navrequest(thisview, frame, networkRequest):

address = networkRequest.get_uri()
if not “debian.org” in address:

md = gtk.MessageDialog(win, gtk.
DIALOG_DESTROY_WITH_PARENT, gtk.MESSAGE_INFO, gtk.BUT-
TONS_CLOSE, “Not allowed to leave the site!”)
 md.run()
 md.destroy()
 view.open(“http://www.debian.org”)

view = webkit.WebView()
view.connect(“navigation-requested”, navrequest)

sw = gtk.ScrolledWindow()
sw.add(view)

button = gtk.Button(“Back”)
button.connect(“clicked”, goback)

vbox = gtk.VBox()
vbox.pack_start(button, False, False, 0)
vbox.add(sw)

win = gtk.Window(gtk.WINDOW_TOPLEVEL)
win.set_size_request(800, 600)
win.connect(“destroy”, gtk.main_quit)
win.set_title(“Linux Voice browser”)
win.add(vbox)
win.show_all()

view.open(“http://www.debian.org”)
gtk.main()

Now, we’re not going to write the entire HTML, CSS
and JavaScript rendering engine ourselves – that
would take months of hard effort and fill many issues
of the magazine. No, we’ll leave that to WebKit, an
extremely capable rendering engine used in several
notable browsers such as Chrome/Chromium and
Safari. (Well, Chrome now uses the Blink rendering
engine, but this is based on WebKit.)

There’s a great Python module to interface with
WebKit, which we’re using here: you’ll find it in the
python-webkit package in Debian and Ubuntu-based
distros. You’ll also need python-gtk2 for the interface.
So let’s step through the code:
import gtk, webkit

This is simple enough – it just tells Python that we
want to use the GTK module to provide the GUI
widgets, and the WebKit module for the rendering
engine. Then we have two functions:
def goback(button):
...
def navrequest(thisview, frame, networkRequest):
...
We’ll come back to these in a moment, because first

CODE FOR ALL FEATURE

www.linuxvoice.com 39

Making Python apps directly executable

It’s easy to run our browser from the command line by
typing python microbrowser.py, but what if you want to
make it directly executable – so you can run it by simply
double-clicking on it? The trick is to add this to the top of
the file:
#!/usr/bin/env python

Now make the file executable (eg chmod +x
microbrowser.py) and run it (./microbrowser.py). This
extra first line tells the operating system which interpreter
should be used with the following code, so you don’t need
to specify Python manually at the command line. In your
kiosk setup, you can easily trim down a desktop or window
manager to the bare essentials, and add a single launcher
pointing at microbrowser.py somewhere on your system.

And here’s what happens
if users try to stray beyond
the limits, as we defined in
the navrequest() function.

we need to set up some code to use them. So
execution of the program begins here:
view = webkit.WebView()
view.connect(“navigation-requested”, navrequest)

This is the heart of the program. We create a new
object called view (an object is like a variable, but it
can store and do a lot more), which is a WebKit
WebView. Put simply, this is a plain web browser view
– but with no buttons, no surrounding window, or
anything like that. It’s just a canvas to render web
pages inside.

The second line of this snippet is crucially
important, and demonstrates a callback function. We
tell our web page view that if a navigation event
occurs (ie the user clicks on a link), we should call the
navrequest function as included at the start of the
code. This function retrieves the address of the clicked
link (networkRequest.get_uri) and checks to see if
debian.org is contained in the address. If not, we
show a dialog box and go back to the Debian home
page. (Yes, this doesn’t make it 100% impossible for
people to escape www.debian.org, but you could
narrow down the allowed links even further with
regular expressions – that’s beyond the scope of this
guide though!)

So, we have a web browsing pane which checks
links as they’re clicked. Next are these lines:
sw = gtk.ScrolledWindow()
sw.add(view)
button = gtk.Button(“Back”)
button.connect(“clicked”, goback)

As mentioned, the WebKit view isn’t attached to
anything yet – it just exists in memory somewhere
and that’s it. Here we attach it to a GTK scrolling
window so that users have scroll bars to move around
in the page. We create a new ScrolledWindow and
add the view object to it.

Then we create a new GTK button with the label
Back, and also attach it to a callback function we
wrote earlier: goback. So whenever the user clicks this
button, the function goback is called. In that function,
we tell the view to step back a page (view.go_back())
and return to the main code.

Now we have to pack the button and WebKit view
into a single space, for which we use a vertical box
widget in GTK:
vbox = gtk.VBox()
vbox.pack_start(button, False, False, 0)
vbox.add(sw)

Then the following six lines, beginning with win,
create a new application window, set its size, say what
to do when the close button is clicked and set a title.
They also add the vertical box widget to the
application window and make sure that all of the
widgets inside it are visible. And the last two lines are:
view.open(“http://www.debian.org”)
gtk.main()

Here we tell the WebKit view to open a specific
page, and run GTK’s main event loop (where it
watches for button clicks
and window operations
– we leave it alone from
here).

And that’s it! We’ve
crammed a lot in here, so
if you have any
questions, check out the websites for Python GTK
(www.pygtk.org) and Python WebKit (https://code.
google.com/p/pywebkitgtk). If you need further help,
post on our forums at http://forums.linuxvoice.com
and we’ll do our best to answer.

“There’s a great Python module
to interface with WebKit, which
we’re using here.”

Want to delve into more
advanced Python topics?
See http://docs.python.org
for a wealth of tutorials.

FEATURE CODE FOR ALL

www.linuxvoice.com40

Mobile Linux
Don’t rely on the app store for software – create your own.

Over the last few years, Linux has taken over
the mobile computing marketplace. Android is
hugely popular, and there’s also Amazon’s Fire

OS, Firefox OS, Sailfish OS, Tizen, Bada and soon
there’ll be Ubuntu Touch as well. Developing for
mobile platforms isn’t like desktop Linux, where the
same code is just repackaged for different distros.
This allows developers to make their apps fit the look
and feel of the OS, but it also means that you have to
spend a long time developing for the different devices.

Fortunately, it doesn’t have to be this way. It is
possible to maintain a single codebase for use across
all the Linux-based mobile platforms (and a few
non-Linux ones like iOS and Windows Phone as well).
This way is Apache Cordova.

Apache Cordova is a framework that enables you to
develop in HTML and JavaScript, then package it up
for each different environment.

While it may once have been suitable only for
displaying web pages, and perhaps a little interaction,
JavaScript has grown in to a powerful programming
environment. If you don’t believe us, have a look at
these examples and see for yourself:

The Unreal Engine 3 has been ported to JavaScript
and you can explore Epic Citadel in your browser:
www.unrealengine.com/html5.

Tearable cloth: http://codepen.io/suffick/pen/
KrAwx.

Freerider II: www.freeriderhd.com/t/1016-layers.
With the canvas HTML 5 element, you can make 2D

JavaScript graphics as complex as you like, and with
WebGL, you can even harness the power of the
device’s GPU to create accelerated 3D graphics.
WebRTC can be used to set up a communication
channel between two browsers, and Webaudio helps
you add sound to your creations. We should point out
that not all of these features are as yet possible with
Cordova on all devices (even new ones), but it’s only a
matter of time.

The performance of JavaScript has long been
considered a problem for web app development, but
in recent years, this has improved dramatically. Now,
well-written JavaScript should perform at about half

the speed of natively compiled code. This means that
it’s still not quite there for some high-performance
applications, but it should be fine for most cases.

The people at Mozilla know more than most about
the power of HTML and JavaScript, and they believe in
it so much that they built an entire phone operating
system built around it.

Another great advantage of the HTML and
JavaScript approach is that it makes it really easy to
get started. You can create simple pages in point-and-
click HTML editors, then progress onwards as you
learn more about programming and the environment.

First build
To get started, you’ll need the appropriate SDK for the
platform (or platforms) you’re developing for, and the
appropriate version of Cordova (a full list can be found
at cordova.apache.org/#download). In this tutorial
we’re going to use Android, as it’s the most popular
mobile Linux, but you shouldn’t have any problem
transferring the work to a different platform such as
Ubuntu Phone or Firefox OS. Sailfish OS should be
able to run Android apps, but we haven’t been able to
test this particular app.

You’ll need the SDK for every environment you’re
developing for. For Android, you can get it from
http://developer.android.com/sdk. You’ll get a ZIP file
that you can extract. You need to add the sdk/
platform-tools and sdk/tools directories from this ZIP
to your path. In the author’s environment, this was
with the following command, though you’ll have to
change it depending on where you unzip the SDK:
export PATH=$PATH:/home/ben/Downloads/adt-bundle-linux-
x86-20131030/sdk/platform-tools:/home/ben/Downloads/adt-
bundle-linux-x86-20131030/sdk/tools

PhoneGap

Cordova is closely related to Adobe PhoneGap. In fact,
they’re so closely related that they’re often mistaken for
one another. Officially, PhoneGap is an implementation
of Cordova, but it doesn’t add much to the core release
in the same way a distribution of Linux adds a lot of
software around the kernel. For now we prefer to build on
a framework released by the Apache Software Foundation
than one developed by Adobe.

Don’t forget to consider the size of your computer screen
when selecting what type of device to emulate. Modern
phones have a lot of pixels (often more than monitors).

CODE FOR ALL FEATURE

www.linuxvoice.com 41

You’ll have to re-run this every time you restart your
computer unless you add it to the .bashrc file in your
home directory.

Cordova is a node.js application, and you’ll need
both node.js and npm for it to run. On Ubuntu and
derivatives, this can be done with the following code. If
you’re using a different distro, check the available
packages:
sudo apt-add-repository ppa:chris-lea/node.js
sudo apt-get update
sudo apt-get install npm nodejs and
npm config set registry http://registry.npmjs.org/
sudo npm install -g cordova

Cordova works with a specific directory structure.
To create a new project directory and appropriate
subdirectories run cordova create myProject, where
myProject is the name of the new project. Now you
can move into the new directory with cd myProject.

Projects start off without any platforms. You can
add as many as you like provided you have the SDKs
installed, and Cordova will manage the builds for you.
We’ll just add Android with:
cordova platform add android

And you can compile the example code (that each
project is created with) using:
cordova build android

In order to test your app, you either need an Android
device, or to use an emulator. To create a new
emulated device, open the version of Eclipse that
came bundled with the Android SDK. Go to File > New
> Other > Android > Android Project From Existing
Code and select the platforms/android folder from
your project’s directory. Then do to Window > Android
Virtual Device Manager and create a new virtual
device. Once this is set up, you can run the project
from the command line with:
cordova emulate android

Some of these work far better with a physical
device than an emulator, so if you have an Android
phone or tablet, it’ll be easier to follow the rest of this
tutorial on that. The method for doing this varies
depending on the version of Android you have. Visit
http://developer.android.com/tools/device.html for
more details. Once you’ve set up your phone, and
connected it to your computer via the USB cable, you
can load and run the app with:
cordova run android
In its basic state, this enables you to package up

HTML and JavaScript for phones. In essence, it allows
you to create off-line websites. This certainly has its
uses, and many apps are nothing more than this.

Harness phone-specific features
However, to be a true phone app, it should have
access to more of the phone’s features, such as the
GPS, accelerometer or filesystem. These aren’t
available through normal JavaScript, but Cordova
allows plugins that expose certain features to its
JavaScript API. Take a look at the boxout above for
the standard plugins.

As an example, we’re going to create a simple
weather forecast app. It’ll get the current location, then
display a weather forecast for the area. We’ll also add
the ability to share it using social media, as apparently
all good apps do this.

To start with, we need to get the HTML and
JavaScript to grab a forecast based on latitude and
longitude. Since everything is in the web technologies,
it’s far easier to test it out using web development
tools than the Android-specific ones. Once
everything’s working properly in a browser, you can
then transfer it to Cordova and check it in Android.

We’ll start with a really simple HTML doc that just
grabs a forecast for London. Change the www/index.
html file so that it contains:
<!DOCTYPE html>
<html>
<head>
<title>Weather Forecast</title>
</head>
<body>
Forecast:

<iframe id=”forecast_embed” type=”text/html” frameborder=”0”
height=”245px” width=”245px” src=”http://forecast.io/embed/#l
at=51.5072&lon=0.1275&units=uk”> </iframe>
</body>
</html>

Save this as index.html in the www folder of your
app. You could run this using Cordova on your phone
or an emulator, but it’s easier at this stage to open it in
your normal web
browser.

51.5072, 0.1275 are
the coordinates we’ll use
(this is in London). This
grabs an iframe with the
current forecast from
forecast.io. In order grab the forecast for the current
location, all you need to do is create an iframe with the
right latitude and longitude.

Writing iframes in JavaScript is easy, since you can
manipulate the HTML inside an element. All you need
to do is create a <div> </div> that you can put the
iframe inside. Now we’ll add the ablity to switch the
location between London and New York. First change
the code between the <body></body> tags to:

Cordova pugins

To access phone features, you’ll need to use plugins.
The standard ones that come as part of Cordova are:
Accelerometer, Camera, Capture, Compass, Connection,
Contact, Device, Events, File, Geolocation, Globalization,
InAppBrowser, Media, Notifications, Splashscreen and
Storage. There’s also a good selection of plugins available
at http://plugreg.com, should the standard ones not do
everything you need.

“Another advantage of HTML
and JavaScript is that it makes
it really easy to get started.”

FEATURE CODE FOR ALL

www.linuxvoice.com42

Forecast:
<div id=”location”></div>
<div id=”forecast”>Select Location</div>

 <button onclick=”getForecast(51.5072, 0.1275)”>London
Forecast</button>

 <button onclick=”getForecast(40.6700,73.9400)”>New York
Forecast</button>

<div id=”getlocalforecast”></div>
<div id=”forecastDetails”></div>

This has two divs with different IDs that we’ll use
now, and some more that we’ll use in a bit. We’ll use
JavaScript to update them to what we need them to
be. The two buttons call the getForecast(latitude,
longitude) function that we’ll now define.

Add the following just before the </head> tag:
<script type=”text/javascript”>
function getForecast(latitude, longitude) {
 var element = document.getElementById(‘location’);
 element.innerHTML = ‘Latitude: ‘ + latitude + ‘
’ +
 ‘Longitude: ‘ + longitude + ‘
’;
 window.iframeurl=’http://forecast.io/embed/#lat=’ + latitude +
 ‘&lon=’ + longitude + ‘&units=uk’;
 showSimple();
 }
function showSimple() {
 var weather = document.getElementById(‘forecast’);
 weather.innerHTML = ‘<iframe id=”forecast_embed”
type=”text/html” frameborder=”0”’ +
 ‘height=”245px” width=”245px” src=”’ + window.iframeurl +
‘”> </iframe>’;
 }
</script>

This splits the execution up into two stages. The
first sets the contents of <div id=”location></div>,
and the variable window.iframeurl. By defining this
variable as attached to window, it makes it available to
all our functions, rather than just local to the current
function. The same effect could have been achieved
by using a global variable.

The second function sets the <div id=”forecast”></
div> to be an iframe with the appropriate location. The
reason we’ve split this up into two functions will

become clear later. Again, you can test this out in a
web browser and it should work fine.

Not just a website!
Now let’s add the phone-specific stuff. Cordova uses
plugins to add access to different features, so in order
for our app to be able to access the location, we need
to use the Geolocation plugin. This is done by running
the following command in the root directory of the
web app:
cordova plugin add org.apache.cordova.geolocation
This will add it to every platform you have registered
as long as the plugin works on that platform.

In order to access the Cordova features, you need
the cordova.js script, so add the following line just
below </title>:
<script type=”text/javascript” charset=”utf-8” src=”cordova.
js”></script>

With this in place, you can add the following
functions inside your main <script> tag:
document.addEventListener(“deviceready”, onDeviceReady,
false);
function onDeviceReady() {
 localforecast = document.getElementById(‘getlocalforecast’);

localforecast.innerHTML = ‘<button onclick=”getLocal()”>Local
Forecast</button>’;
 }
function getLocal() {
 navigator.geolocation.getCurrentPosition(onSuccess,
onError);
 }
 function onSuccess(position) {
 getForecast(position.coords.latitude, position.coords.
longitude);
 }
function onError(error) {
 alert(‘code: ‘ + error.code + ‘\n’ +
 ‘message: ‘ + error.message + ‘\n’);
 }

The first line listens for the deviceready event. This
tells it to run the function onDeviceReady once the

The documentation at
http://cordova.apache.
org/docs/en/3.3.0/ is a
great place to find help.
It has guides for all the
standard plugins including
comprehensive code
samples.

Signing apps
Cordova can build a final version of your app using the
--release option to the build command. However, this won’t
install on any phone until it’s been signed. You can create
a key for signing it yourself, so this isn’t a restriction on
distributing your software. There are details of how to do it
here: http://developer.android.com/tools/publishing/app-
signing.html.

You can distribute your app without an app store if you
want. Just send the .apk file to people and (as long as they
have sideloading enabled) they can install it themselves. Of
course, you can put your app on the main Google Play store
if. You’ll find details about how to do this here:
http://developer.android.com/distribute/googleplay/
publish/preparing.html.

Google Play isn’t the only Android app store though. If
you open source your app, you may wish to add it to the
F-Droid store. Take a look at www.f-droid.org for details.

CODE FOR ALL FEATURE

www.linuxvoice.com 43

app is running properly. We’ve added this to stop
people trying to get a local forecast too soon.

The function getLocal can just call navigator.
geolocation.getCurrentPosition(). We’ve passed it
two parameters: the first is the name of the function
to call if it succeeds in getting the location; the second
is the function to call if there’s an error.

onSuccess passes the returned values on to
getForecast(), while onError() displays the error
message as a JavaScript alert.

With all this entered and saved, it’s ready for its first
proper test. To compile and run it, enter the following
terminal commands in the app’s root directory:
cordova build android
cordova run android
If you’ve got your phone attached, this will send it
across and open it on your device, otherwise it’ll start
the emulator.

You’ve just created a phone app! It’s quite limited,
but accesses one of the phone’s features. Since all
good mobile applications have social features, we’ll
add this facility now. We won’t make specific links to
social media, but use the phone’s features to share
the forecast with other applications. The user can
then pick how they want to share the forecast.

Engage Twitbook
As you may have guessed, this feature comes from
another plugin, but this time it’s one that’s not part of
the main Cordova release. You can add plugins
straight from Git, so in a terminal in the app’s root
directory, enter:
cordova plugin add https://github.com/leecrossley/cordova-
plugin-social-message.git

As with the previous plugin, this exposes more
JavaScript functions that we can access. In this case,
it’s socialmessage.send(). Using this, you can interact
with the other apps on the phone. Add the following
function inside the <script></script> tags:
function share() {
 var message = {
 subject: “Weather Forecast”,
 text: “Check out my local forecast”,
 url: window.iframeurl
 }
 window.socialmessage.send(message);
 }

You’ll also need a button in the body of the HTML to
access it. However, you can’t share the forecast until
it’s received, so the button should only appear once
there’s a forecast. The easiest way to do this is by
adding the lines:
 var weatherDetails = document.getElementById(‘forecast
Details’);
 weatherDetails.innerHTML = ‘<button onclick=”share()”>’ +
‘Share this forecast</button>’;
to the end of the getForecast() function.

We’re almost done with our app now. The last little
feature we’ll add is the ability to show a simple or

detailed forecast. Fortunately, Forecast.io does most
of the hard work on this. The only thing we have to do
is change the size of the iframe.

You’ll need to adjust the showSimple() function and
add showDetails() as per the following:
function showDetails() {
 var weather = document.getElementById(‘forecast’);
 weather.innerHTML = ‘<iframe id=”forecast_embed”
type=”text/html”’ +
 ‘frameborder=”0” height=”245px” width=”500px” src=”’ +
window.iframeurl +
 ‘”> </iframe>
<button onclick=”showSimple()”>Hide
Details</button>’;
 }
function showSimple() {
 var weather = document.
getElementById(‘forecast’);
 weather.innerHTML =
‘<iframe id=”forecast_embed”
type=”text/html”’ +
 ‘frameborder=”0” height=”245px” width=”245px” src=”’ +
window.iframeurl +
 ‘”> </iframe>
<button onclick=”showDetails()”>Show
Details</button>’;
 }

Of course, it still looks a bit plain, and you could add
many more options, but this isn’t a tutorial on creating
the perfect weather forecasting app, it’s a tutorial on
getting started with mobile Linux development. It’s up
to you to decide what to do with it now.

The app in action.
Unfortunately, that’s the
best weather we’ve had in
months.

“Cordova uses plugins to
access different features – we
need the Geolocation plugin.”

FEATURE CODE FOR ALL

www.linuxvoice.com44

Programming the command line
Automate everything, then sit back and relax as your computer takes care of itself.

So far we’ve talked about programming in terms
of making new software. However,
programming can also be a way of linking

together existing software to automate tasks. In this
way, you don’t create anything that you didn’t have
access to before, but you make it much easier to use.
Let’s take a really quick example. Suppose you’re a
writer, and you save all your work in ODT files. These
files are scattered about your home directory
(because most writers aren’t organised enough to
keep their files in one place), and you want to do a full
backup of all your writing.

There are many ways you could do this. One of the
easiest is to create a simple program that searches
for all the files and copies them to a remote computer.

Bash is the shell that most Linuxes use, and while
many users know it only as a command line
environment, it’s also a programming language in its
own right. We can use it to link up a series of Linux
commands to execute based on the information that
other commands provide. In this example, we’ll use
the command:
find /home/ben -name “*.odt”

To find all the required files. Not surprisingly, the
find is command for finding things, and is far more
powerful than this command shows. Using other
options, you can find files based on the time they were
created, the time they were last modified, and a whole
host of other things. See the man page (type man find
in a terminal) for more details.

We’ll then copy all the files into a backup folder
(which could be on an external drive). The bash code
to do all this is:
#!/bin/bash
find /home/ben -name “*.odt” | while read f;
do
 cp -f “$f” /home/ben/backup
done

You’ll need to change /home/ben to the location of
your home directory.

Lets take a look at this in detail. The first line is
called a shebang, and it tells the computer that this is
a Bash script and that it should be executed with the
command /bin/bash.

The second line does two things. First, it executes
the find command, which we explained above; then it
pipes the output of the command into a while loop.
Piping (which is done using the character |) is an
essential feature of Bash programming, and it can
also be done on the command line. It just tells the
system to take the output of one command and feed
it into the next. As another example, if you’re using a
terminal and you’re in a directory with loads and loads
of files, it sometimes doesn’t work very well if you just
run ls to list them (the filenames can go off the top of
the screen). Instead, you can pipe the output into a
text viewer such as less with:
ls | less

This allows you to scroll up and down through the
list of files. You can also do it for other commands
that produce a lot of output.

Digression over
Back to our backup script though. In this case, the
program outputs the result of the find command into
while read f. This slightly cryptic statement starts a
loop for every line in the output and tells it to store the
line in the variable f. In other words, everything
between do and done is executed once for every line
in the output of the find command, that is:
cp -f “$f” /ben/backup
The $f tells Bash to insert the line output from the find
command here. It’s in quote marks because otherwise
filenames with spaces in them will cause problems.

This is a really simple example, but it shows how
you can build up scripts in Bash. The two main ways
of combining commands are piping output, and
running loops over multiple lines. With these two
techniques, you can combine all the command line
tools in Linux into your own powerful scripts.

Before running it, you have to make the backup
directory with:
mkdir ~/backup

If you save this program as backup.sh, you can run
it from the command line with:
bash backup.sh

As long as you are in the same directory that you
saved the file. Alternatively, if you make it executable
with the command:
chmod a+x backup.sh
you can run it with:
./backup.sh

Sometimes, it’s not enough just to send the output
of one command straight into another. Sometimes

Explain Shell (www.explainshell.com) is a tool for linking
bash commands to their help text.

CODE FOR ALL FEATURE

www.linuxvoice.com 45

you need to make a decision based on the output
that’s being processed. For example, what if you didn’t
want to copy all files straight into the backup
directory? What if you wanted to sort them and put
different files in different places?

In the next example, we’ll find all LibreOffice Writer
and Calc files (ODT and ODS respectively) and all MS
Office Word and Excel files (DOC/DOCX and XLS/
XLSX respectively), and split them into word
processor and spreadsheet folders.

This can be done with the following:
#!/bin/bash
find /home/ben \(-name “*.odt” -o -name “*.ods” -o -name
“*.doc” -o -name “*.docx” -o -name “*.xls” -name “*.xlsx” \) |
while read f;
do
 if [[$f == *.odt]] || [[$f == *.doc]] || [[$f == *.docx]]
 then
 cp -f “$f” /home/ben/backup/wordprocessor
 fi
 if [[$f == *.ods]] || [[$f == *.xls]] || [[$f == *.xlsx]]
 then
 cp -f “$f” /home/ben/backup/spreadsheet
 fi
done

The Bash if command allows you to execute a code
block only if a particular condition is true. It’s both
hugely powerful and quite complex. Used like this
(with [[string1 == string2]]) it matches filenames,
and you can use asterisks in the same way you can at
the command line, so *.doc matches any file that
ends with .doc. The || is used to group multiple
conditions together so that the code block is run if any
one of them is true.

Running automatically
Writing scripts like this can really simplify general
tasks like backing up data, but wouldn’t it be great if
you could automate running them as well?

Almost all versions of Linux (and, for that matter,
Unix in general) come with a tool called crontab. The
name doesn’t give much away, but it’s for scheduling
tasks to run at certain times (it’s named after Chronos,
the Greek god of time). There are only really two
options that you need to know: -e and -l. The first is
used to edit scheduled commands, and the second is
used to list them.

So, to set up our script to back up commands, run:
crontab -e

This will start a text editor (usually either Vim or
Nano). If blank lines at the bottom of the file are
displayed as ~, then it’s probably opened in Vim. This
is a powerful editor, but it can be quite confusing if you
haven’t used it before. If you want to switch to
something easier, exit Vim by pressing Escape, :, Q
and !. They you can tell the system to use Nano
instead by running:
export EDITOR=nano
crontab -e

Books

Bash scripting is incredibly, but can also get quite technical.
If you’re interested in taking it further, there are loads of
good books on the subject. The Linux Command Line and
The Advanced Bash Scripting guide are both excellent
choices. The latter is a bit more technical than the former.
What’s more, the both have e-book versions that are free as
in zero cost and free as in speech. You can get them from
www.linuxcommand.org/tlcl.php and www.tldp.org/LDP/
abs/html/index.html respectively.

If you prefer your books in paper form, see The Linux
Command Line website for purchasing options.

You should now see ‘GNU nano’ In the top-left
corner. Depending on your distribution, you may find
that you already have some scheduled tasks, you may
have a blank file, or you may have some lines that
start with a # (these are
comments).

To schedule tasks, you
need to add a line to this
file that tells it what to
run and when. Schedules
are broken up into five
parts, each of which can be a number or an asterisk.
For example:
0 2 * * * /home/ben/backup.sh

The five scheduling segments represent the minute
of the hour, the hour of the day, the day of the month,
the month of the year, and the day of the week. An
asterisk means ‘every’. The above line will run the
backup script at 2.00am every day. If you were more
cautious, you could run it every hour with:
0 * * * * /home/ben/backup.sh

Or you could run it twice a day with:
0 0,12 * * * /home/ben/backup.sh

“Sometimes it’s not enough
just to send the output of one
command into another.”

