
FEATURE THE COMMAND LINE

www.linuxvoice.com18

You know how in films, when they want to
portray a computer genius/nerd/hacker at
work, they always show someone tapping

incomprehensible gobbledygook into a command
line? Sometimes it’ll be a green-on-black text
terminal from the 1980s, accompanied by various
beeping noises, just to add to the mystique. And
thanks to stereotypes like these, many non-
technical people assume that the command
line is a weird and arcane tool, only to be used if
there’s no pointy-clicky GUI goodness at hand.

Now, as a Linux user, you already know

that that’s nonsense, and the command line
interface has its benefits. But have you really
delved deeply into it? Have you discovered all its
hidden tricks? And have you been able to ditch
the mouse and start working more quickly? Over
the next seven pages we’ll show you how the
command line interface (CLI) can do certain jobs
much more efficiently than GUI applications,
making your day-to-day Linux life smarter, easier
and faster. Even if you’ve been using the CLI for
a while, you’ll find plenty of new gems in here, so
let’s get started.

If you haven’t mastered the command line, you’re missing
out on the most powerful features of Linux. Mike Saunders

has tips galore for both newbies and old-timers...

“The command line can do certain jobs
much more efficiently than GUI apps.”

THE COMMAND LINE FEATURE

www.linuxvoice.com 19

Essential tips
If you’re new to the command line, here are
some things you absolutely need to know. In
most Linux distros, the CLI is accessible in your
desktop’s program menu as Terminal, XTerm or
Konsole.

 ls/cd/rm/mv The most common commands
(list files, change directory, remove file and
move/rename file). Each command has a
manual page (eg man ls – hit Q to quit the
viewer). Many commands have extra options;
for example, ls -la lists all files, including
hidden ones, with details.
 Tab Hit the Tab key to automatically complete
a filename or directory. If you want to delete
foobarlongfile.txt, for instance, enter rm foo
and hit Tab, and it should be completed.
History Use the up and down cursor keys to
navigate through previous commands. You
can edit them as well.
 ~ Your home directory (eg /home/bob/)
 > and >> sends output of a command to a file,
overwriting (>) or appending (>>). Eg ls -l >
list.txt.

Dolphin, Nautilus, Thunar and co.
are OK for simple drag-and-drop
jobs, but in all honesty they don’t

compare to the CLI. As soon as you need
to do something complicated, you end
up with a horribly long workflow involving
countless mouse clicks until your wrists get
overloaded with RSI.

Let’s take a complex job and see how
it can be made simpler with some CLI
magic. Even though you might not need this
specific command on a day-to-day basis,
you can break out the component parts and
use them on your Linux travels in future,
saving you heaps of time. So: imagine
that you have a bunch of files without any
extensions, and you don’t know what’s
inside them. (You can see hundreds of these
in Firefox’s cache, for example.) They look
like this:
3F7DFd01
E64C7d01
C42F9d01
F0887d01
...

Let’s say you want to open the 10 biggest
JPEG files in Gimp to have a look at them.
Think about how you’d do that in your
graphical file manager – if it’s even possible.
Providing that your file manager can peek
inside the contents of files to determine their
format, you might be able to click around
and somehow sort the list by file format and
size simultaneously (very few file managers
can do that), and then click and drag to
select the top 10, and right-click on the
selection to open them in a program, then
click down the list to find Gimp… Ugh.

Now check this command out:
file * | grep JPEG | sed s/:.*// | xargs ls -S | head -n10
| xargs gimp

It’s a beast, isn’t it? But actually, it’s
a bunch of smaller commands linked
together, done in such as way that you can
understand what each part does.

First, the file * part looks at every file in the
current directory, and works out the filetype
from the bytes contained inside. So you get

Better file management
GUI file managers are clunky and slow. Here’s how to work at light speed.

lines like this:
CBD2Fd01: JPEG image data, JFIF standard 1.01
D0488m01: raw G3 data, byte-padded
DB54Ad01: gzip compressed data, max compression

We only want JPEG files, so we take the
output from the file * command via a pipe
(|), then grep to just retrieve lines containing
JPEG. After this point we don’t need any
information other than the filename, so
we pipe the text to sed, the stream editor,
which does a replacement. It takes a colon
: followed by any sequence of characters
(.*) and replaces it with nothing (// – ie
nothing between the slashes). So it gets rid
of everything but the filenames.

Then, using xargs ls, we bundle together
all the filenames we’ve got so far and list
them, sorting by size (-S). The head part
retrieves the top 10 items of the list, and
then using xargs again, we bundle up all the
filenames into a single string and tell Gimp
to open them.

It might take a few re-reads to really grok
all this, but once you have your head around

Using pipes and multiple commands, you can narrow down to just the filenames you need, all
without hundreds of tedious mouse clicks.

it, you can see how powerful the CLI is for
working with files. (For instance, you could
replace xargs gimp with xargs rm to delete
those 10 biggest JPEG files.) Try adding
your own components to the command, and
making new ones using parts of it.

“Once you have your head around it, you can see
how powerful the CLI is for working with files.”

FEATURE THE COMMAND LINE

www.linuxvoice.com20

Vim’s commands look weird and cryptic, but
when you piece them together they make
more sense. For instance, in Vim-speak d is
delete, a means around an object, and P
refers to a paragraph. Hit dap and voila:
delete text around a paragraph (that is, text
inside the paragraph and trailing spaces).

It’s also worth customising the .vimrc file
in your home directory to make the editor a
bit friendlier. Here’s what we have:
set number ruler laststatus=2 hlsearch ignorecase
title
syntax on
This adds: line numbering; a ruler showing
the current line number; a status line with the
filename; highlighted searches; case-
insensitive searches; more information in the
terminal window title; and syntax highlighting
for various programming languages.

Advanced Vim tricks
Vim is chock-full of keyboard shortcuts and
commands that make life easier. Want to
search for the next instance of the word
under the cursor? Hit * (asterisk). Doing

A well-tuned ~/.vimrc file makes Vim more attractive, informative and welcoming.

some programming, and want to find a
matching bracket or brace? Move the cursor
over the bracket and hit %. Want to quickly
go back to the last place you entered text?
Use gi.

Earlier we mentioned using dap to delete
a whole paragraph. This is an example of
using a text object, and this is where Vim is
ridiculously powerful. For instance, das
deletes a sentence, while ci” (C-I-double
quotes) changes text inside a pair of double
quotes. Say you have this text:

To change the filename: move the cursor
anywhere inside the quotes, and hit ci”. Vim
will remove all text inside the quotes and
place you in insert mode, so you can type in
some new text and hit Esc when you’re
done. And this opens up possibilities for the
equally awesome . (dot) command.
Basically, . repeats the last text editing action
– both the command(s) you used in Vim
and the text you typed. So if you move the
cursor into another <img src… line, between
the quotes, and hit . then the text will be
replaced again, exactly like the first time.

This is tremendously useful if you need to
do a lot of quick replacements: do the
command once, then jump around to other
places and tap . where necessary. Because .

“Vim is chock-full of keyboard shortcuts and
commands that make life easier.”

Better editing
Learning a good text editor on the command line is essential.

We can’t stress enough how
important it is to learn a good
text editor. It really makes a vast

difference to how you work – even if you’re
not a programmer. Some GUI text editors
are well-specced with plenty of features, but
when you’re working with plain text, why
should you keep moving your hands away
from the keyboard to grab the mouse?

The two most notable text editors are
Emacs and Vim. They both have their
strengths and weaknesses, but we’ll focus
on the latter here because it’s installed in
nigh-on every Linux distro by default.

This isn’t a guide to the basics – we did
that in issue 1. If you don’t have that issue
and you’ve never used Vim before, see the
“Micro guide” box and then do the vimtutor.
Here we’ll explain why it’s well worth
learning, and if you’re a regular Vim user,
we’ll show you some tricks that you might
not have come across.

How to love Vim
Many people try Vim and come away
frustrated, because they don’t spend time
getting into the right mindset. Some people
use it often but never learn to enjoy it. That’s
fair enough – it’s not a very welcoming
program. But bear these in mind and you’ll
learn to love it:

Always switch back command mode
(with Esc) straight after editing. Make
command mode your default mode. Vim is a
modal editor, which means sometimes
you’re editing text, and sometimes you’re
giving commands. You should only be in
insert mode when you’re editing text, so
always hit Esc as soon as you’re done. You’ll
learn commands better this way, instead of
accidentally adding them to your text.

Use the H, J, K and L keys to navigate.
These are on the home row, ie under your
fingers, so you don’t have to move your
hands down to the cursor keys. They really
help you work faster – although it might
take a few days to get used to them.

Treat commands as a language. At first,

THE COMMAND LINE FEATURE

www.linuxvoice.com 21

New to Vim? Here’s a micro guide

Enter vim newfile.txt to edit a new file. Hit I and
you’ll see -- INSERT -- at the bottom, which means
you’re in the Vim mode for adding text. Type in a
few lines. When you’re done, hit Esc to return to
command mode.

Use the H/J/K/L keys to move around. Hit X
to delete a character under the cursor and DD
to delete a line. Use 0 (zero) to go to the start of
a line, and $ to jump to the end. Type a number

and press Shift+G to go to that line. Hit Ctrl+G
to view the current line number and U to undo an
operation.

To save, make sure you’re in command mode
(hit Esc to be sure) and type :W. To quit, use :Q.
To quit without saving, :Q!. Those are the basics –
now enter vimtutor and follow the more detailed
guide, which will take about 20 minutes. Then
you’ll be ready to use the tips here.

Although the Vimtutor doesn’t make you an expert in Vim, it gets you well-versed with the
basics of this powerful, flexible text editor (and its many offshoots).

includes a whole text action, it can even be
used to repeat editing operations with
backspaces inside.

Imagine you have some function
prototypes copied from a header file:
int foo(int a, int b);
void bar(char *d);
void baz(int a, bool d);

Now you want to implement the functions
themselves. Go to the first line (int foo) and
tap A (capital) to append text onto the end of
the line. Hit Backspace to remove the
semi-colon, Enter (for a newline), {, Enter
again, }, and Enter once more. Then hit Esc
to get back to command mode. Now the
first line has changed into this:
int foo(int a, int b)
{
}

So, we’ve converted a prototype into a
proper function. Now move the cursor to the
second prototype line (void bar), hit . and
voilà, it is also converted, using the exact
same editing action as before. You can then
hit . again to convert the third line. It’s a
massive time saver.

Globalisation
Another hugely powerful (and not well
known) command is :g – the global
command. Take this for instance:
:g/someword/m0

This takes all lines containing the word
someword and moves them to line zero, ie
the top of the file. Or you could use :g/
someword/d to delete all lines containing
someword.

An especially useful add-on option for :g is
norm, which puts Vim into normal

(command) mode, and then executes the
commands as written. For instance, say you
have some Python code and you want to
comment out all lines containing DEBUG by
putting hash marks at the start:

:g/DEBUG/norm 0i#
Here, for each line containing DEBUG, Vim

executes 0i# – that is, go to the start of the
line, switch to insert mode, and add a hash.
How cool is that? And then you can even
add Esc keystrokes when entering a :g
command by tapping Ctrl+V and then Esc.

Save time and energy
Imagine you want to add C-like comments
to DEBUG lines, so that:
printf(“DEBUG: Blah blah”);
becomes:
/* printf(“DEBUG: Blah blah”); */

Use this:
:g/DEBUG/norm 0i/* ^[A */

(Again, use Ctrl+V followed by Esc to input
the ^[escape character here.) This goes to
the start of the line, inserts /* followed by a
space, then Escapes back out of insert
mode, goes to the end, and adds */.

Just like we said – ridiculously powerful.
And more fun than using dreaded regular
expressions. (PS: Turn to the inside back
cover of this very magazine for a great
cheat-sheet for Vim commands!)

Vim’s learning curve, jocularly depicted at http://tinyurl.com/nfbj3mv (“Why I use Vim” by Pascal
Precht). There’s a huge amount to learn at the start, but it all makes sense with time.

Vim learning curve

cli
m

bi
ng

 up

sliding down

FEATURE THE COMMAND LINE

www.linuxvoice.com22

Convert, resize, flip, crop and add captions to hundreds of images in seconds, thanks to ImageMagick.

“Image Magick is monumentally versatile and
supports over 100 different file formats.”

Better image editing
Huh? The CLI is good at editing pictures? Surely you can’t be serious…

Iam serious, and don’t call me Shirley.
Yes, there are many cases where it’s
easier and faster to edit images at the

command line, rather than doing them in
pointy-click fashion via a graphical tool like
Gimp. This is especially true if you want to
perform editing or processing operations
on multiple files at the same time – in other
words, batch processing.

The suite of programs we’re using here is
ImageMagick, which you’ve probably heard
of if you’ve been on the Linux scene for a
while, because it has been in development
since the early 90s. ImageMagick is
monumentally versatile and supports over
100 different file formats – so it will handle
nigh-on anything you throw at it.

The most commonly used tool in
ImageMagick is convert, which works like
this example command:
convert image.png image.jpg
Pretty simple, right? This just makes a JPEG

version of the PNG file. Of course, when
you’re generating JPEGs you’ll often want to
alter the quality:
convert -quality 90 image.png image.jpg

Resizing is possible as well. The first
command here specifies a percentage of
the original size, while the second uses
exact dimensions:
convert -resize 75% image.png image.jpg
convert -resize 300x300 image.png image.jpg

Don’t be so square
Something interesting happens with the
second command, and it’s to do with aspect
ratios. If the source image isn’t a square,
the resulting image will be 300 pixels wide
and however many pixels tall to match the
original aspect ratio. If you want to force the
image to be 300 x 300 pixels and ignore the
aspect ratio, add blackslash-exclamation to
the dimensions, like so:
convert -resize 300x300\! image.png image.jpg

Along with file format conversions and
resizing, another common job is to crop an
image – that is, only save a portion of the
original. This is fairly straightforward too:
convert -crop 250x100+20+40 image.png image.jpg

This takes a 250-pixel-wide and 100-pixel-
high chunk of the original picture, from 20
pixels across and 40 pixels down, and saves
it into image.jpg. For crop operations you
might not want to convert the file – instead,
you just want to overwrite the original.
You can do this by changing the convert
command to mogrify and omitting the
destination file:
mogrify -crop 250x100+20+40 image.png

Another useful option is rotate, which
takes the amount of degrees (clockwise):
mogrify -rotate 90 image.png

Lightning fast batch jobs
So far so good, but these commands aren’t
much quicker than doing the same jobs in
a graphical editor. But! When we add some
command line scripting into the mix, it all
becomes a lot more efficient. Say you have
200 .png files in the current directory, and
you want to shrink them all to 50% of their
original sizes:
for f in *.png; do mogrify -resize 50% $f; done

Here we create a loop, saying that for
every file in the current directory that has
a .png extension, we perform a mogrify
operation on that file (the filename is
contained within the $f variable).

What about if you want to convert all
the PNGs to a different format? You could
do this:
for f in *.png; do convert $f $f.jpg; done
But the resulting filenames are a bit ugly
here – foo.png becomes foo.png.jpg, blah.
png becomes blah.png.jpg, and so forth.
However, using a command line trick called
parameter substitution, we can remove the
.png from the destination filenames:
for f in *.png; do convert $f ${f%.png}.jpg; done

Here, the ${f%.png}.jpg bit does the clever
work, removing .png and then adding .jpg
on to the filename stem. (You can also use
mogrify to convert images and replace their
extensions, but it’s worth knowing these
tricks for the future.)

So, with the convert tool and some
command line scripting, you can do

THE COMMAND LINE FEATURE

www.linuxvoice.com 23

Better calculating

Doing calculations at the command line makes much more sense than clicking
loads of little buttons, over and over and over. With Qalc, part of the Qulculator
suite (which also includes GUI tools) you can do some very funky stuff. On
Debian/Ubuntu/Mint-based systems, grab the command line tool with sudo
apt-get install qalc. The program’s manual page is disappointingly small, and
there’s little else in the way of documentation, so the best way to learn it is via
examples. Like so:
qalc “((78*30)+(13*19))/2”

Fair enough, that’s a normal calculation. But Qalc is capable of a lot more:
qalc “addDays(2014-06-18, 50)”

This asks Qalc to perform its internal addDays routine - you can guess what
that does. In our case, we tell it to add 50 days onto the 18th of June, and it
spits out the result:
addDays(“2014-06-18”, 50) = “2014-08-07”
When you first run Qalc it downloads exchange rate information from the
internet, so you can do:
qalc “500 EUR to GBP”

The program also understands lots of other units and conversions:
qalc “1300 feet to metres”
qalc “70 mph to kmh”

It’s especially useful for doing bandwidth calculations:
qalc “10Gibyte / 300(Kibyte/second) to hours”
This tells us how many hours it will take to download 10GB at 300k/sec. Qalc’s
data files are stored in the /usr/share/qalculate/ directory, so it’s well worth
having a nosey in there to see what other units are supported. You can even do
calculations with planets and atomic elements…

conversion, resizing and cropping jobs on
hundreds of images in a matter of seconds.
If you had to do all the alterations by hand,
it’d take hours or even days. ImageMagick
has more cunning features though, so let’s
take a closer look.

If you’re working with batches of photos,
you’ll often need to correct their brightness
and contrast settings. The convert and

mogrify tools have an option for this:
mogrify -brightness-contrast 20x-30 image.jpg

This improves the brightness of the
image by 20%, and reduces the contrast by
30%. Again, you could include this mogrify
command in a ‘for’ loop as discussed earlier,
to fix hundreds of images at once.

ImageMagick is packed full of filters, such
as blurring:

mogrify -blur 5x2 image.jpg
The first number here is the radius, while the
second is the sigma (the actual amount of
blurring). Try playing around with different
values. You may not think it, but you can
even turn pictures into charcoal drawings
with a single command:
mogrify -charcoal 5 image.jpg
Another tool included in ImageMagick is
montage, which creates a single image from
a bunch of images. It’s also useful for adding
captions onto images, like so:
montage -label “My caption” image.jpg -geometry
+0+0 -pointsize 30 newimage.jpg
This adds the words “My caption” in 30 point
font to the bottom of the picture, without
resizing the picture (hence the +0+0), and
writes out the result to newimage.jpg.

Command-line line drawing
One of ImageMagick’s most powerful
features is its set of drawing commands.
You can add all kinds of shapes to images
via the command line, which is also useful
when you’re doing batch processing jobs
and want to add labels or diagrams to
individual images. Take a look at this simple
example:
mogrify -fill white -stroke black -draw “rectangle
30,10 200,100” file.png

This creates a white rectangle with a
1-pixel black border, 200 pixels wide and 100
pixels tall, and places it at 30 pixels across
and 10 pixels down on file.png. Many other
options are available for drawing circles,
polygons and Bézier curves – see the
full list at www.imagemagick.org/script/
command-line-options.php.

Use shellpic (https://github.com/larsjsol/shellpic) to view images in the terminal – handy if
you’re SSHed into a remote server and want a quick preview of an image file.

Qalc is part
of Qalculate,
a bigger suite
of tools that
include fancy
GUI front-
ends.

FEATURE THE COMMAND LINE

www.linuxvoice.com24

you’ll see keyboard shortcuts displayed at
the top of the screen.

Interestingly, Mutt doesn’t include its own
editor; instead, it uses one already installed
on your system. So if you reply to a mail (or
hit m in the message list to create a new
mail), you’ll be thrown into Vim by default.
But you can change the editor in your ~/.
muttrc like so:
set editor=”nano”

(Or you could change that to “emacs”, or
even “gedit” if you need some GUI love.)

Macho macros
So Mutt is great: it’s lightning fast, looks
good, and has loads of keyboard shortcuts
so you don’t have to mess around with the
mouse. But it has some brilliant advanced
features too. Instead of using / to search, hit
L and then type a word. This is the “limit”
command, and it narrows down the
displayed messages to match your
specifications. You can set some very
specific limits:
~N|~d<7d

The Mutt email client makes decent use of colour in the terminal, and like everything in this
venerable application, these colours are highly configurable.

This tells Mutt to display only new
messages (~N) or messages less than 7
days old (~d<7d). The pipe (|) character is
used in the middle to create the “or” part.
To switch back to the full message list, hit L
and then type all. (Mutt’s documentation has
a detailed list of all the options – see
http://tinyurl.com/yzwbrur.)

Additionally, Mutt has excellent support
for macros – that is, pre-determined
sequences of actions. For instance, in the
message composition view, after you’ve
entered the text in your editor and Mutt is
asking if you’re ready to send, you can hit the
A key to attach a file. Enter a filename, hit
Enter, and the file will be attached. But you
could create a macro for this in your .muttrc:
macro compose \cb ‘<attach-file>file.txt<enter>’

This means: in the compose view, if the
user hits Ctrl+B, the attach-file command
will be executed. The word file.txt is inserted
automatically, and a virtual Enter key is
pressed. So Ctrl+B now does the whole
action at once – useful if you frequently
attach the same file to a message.

This is just one example; Mutt supports
hundreds of functions that you can use in
your macros, and really speed up your
day-to-day work. See http://tinyurl.
com/677feer for the full list.

“Mutt has loads of keyboard shortcuts, so you don’t
have to mess around with the mouse.”

Better email
“All mail clients suck. This one just sucks less.” This is the motto for Mutt…

G iven that most emails are plain text,
you don’t lose much by switching
from a GUI to a CLI mail client. And

indeed you gain a lot more, especially if you
choose a client like Mutt. Like many of the
programs we’ve covered in this feature, Mutt
has been around for most of Linux’s history
– its first release was in 1995. And although
it might look old-fashioned and complicated,
in the right hands it’s a superb program, and
it’s available in almost every distribution’s
package repositories.

Before starting Mutt for the first time,
you’ll need to create a .muttrc file in your
home directory. This contains the program’s
settings, and an example for connecting to
an IMAP server (with SMTP for sending) is:
set spoolfile=”imaps://user:password@server.com/
Inbox”
set folder=”imaps://server.com/Inbox”
set smtp_url=”smtp://user:password@server.com:25”
set ssl_starttls=yes
set from=”name@domain.com”
set use_from=yes
set record=”=Sent”
set postponed=”=Drafts”
Change user, server.com, name and domain.
com here to match your mail server settings.
If you access your mail via POP3, see the
relevant section of the Mutt documentation
at http://tinyurl.com/64j7tzp.

Now enter mutt to start the program, and
it’ll retrieve the headers for your emails. Right
away you can see that Mutt does a decent
job given the limits of text mode: it uses
colours and highlighting effectively, and even
displays threaded conversations via red
arrow symbols.

To select a message, use the up and
down cursor keys (or J and K in proper Vi
fashion) and then hit Enter. The mail
contents will be displayed – hit D to delete
the mail, R to reply, and I to go back to the
message list. Use / (forward slash) and
enter a word to search for a mail, and N to
repeat the search. In the main list view,
tapping Q quits the program and returns you
to the command line. And in most views,

THE COMMAND LINE FEATURE

www.linuxvoice.com 25

tried it, you’ll never go back to using plain old
top again.

After all of the command line goodness of
the last seven pages, wouldn’t it be great if
you could record your favourite tricks and
share them with others? You could use
some screen recording software and upload
the results to YouTube, but a more elegant
solution is Asciinema (www.asciinema.org).
You can get it on Debian/Ubuntu like so:
sudo apt-get install python-pip

A sprinkling of ASCII art provides an at-a-glance overview of network activity in Slurm.

Htop is a process monitor like the standard ‘top’
command, but literally a jillion times better.

sudo pip install --upgrade asciinema
(The package might have another name
than python-pip in other distros.) Now enter
asciinema rec, do some work, and type exit
when you’re done. Asciinema will offer to
automatically upload the recording of your
session to its website, and provide you with
an URL you can then share with others. For
instance, here’s a recording of us
demonstrating the mighty power of Figlet:
http://asciinema.org/a/8746

Better downloads

The download dialogs included in web browsers
are very limited, and although more featureful
standalone GUI alternatives exist, sometimes it’s
best to go straight to the CLI. Aria2 is arguably
the best command line download manager in
existence, supporting a gigantic range of features
and options. For instance, say you want to grab an
ISO image that’s hosted on two servers, and they’re
both rather slow:
aria2c -s2 http://foo.com/blah.iso http://another.
com/blah.iso

Here Aria2 downloads one half of the file from
foo.com, and the other half from another.com,
simultaneously, so you get the file much more
quickly than you would using a single connection
to one server.

It’s possible to limit download speeds, so adding
--max-download-limit=100K to the command line
will restrict Aria2 to using 100KB/second of your
bandwidth. And you can even tell it to give up if a
connection becomes too slow:
--lowest-speed-limit=10K

(So if the bandwidth drops to less than 10KB/
sec, Aria2 quits.) Other useful options include
--on-download-complete=command, which
automatically performs a command after a file has
been downloaded. There’s also the --on-download-
error argument, which is handy for dealing with
connection failures.

See Aria2’s website at http://aria2.sf.net for
the full documentation – it’s immensely powerful
when you include it in Bash scripts.

Better administration
Keep tabs on your Linux boxes, wherever in the world they are.

I t goes without saying that the command
line is the best way to administer a Linux
box. Sure, there are some decent GUI

tools, but if you’re working with mail, web or
database servers, chances are they don’t
have anything graphical installed and you’re
logged in via SSH. Or even on your desktop
Linux box, if X goes down you’ll need some
way to fix and monitor things.

Slurm (https://github.com/mattthias/
slurm) is a great little network bandwidth
monitor. Start it by providing the name of a
network interface, eg:
slurm -i eth1

If you don’t know the name of the network
interface(s) on your Linux box, enter ifconfig
for a list. Slurm displays textual information
about the current data send and receive
rates, along with the total number of
transmitted packets and megabytes. It also
shows a colourful graph of bandwidth using
ASCII characters – so if you’re administering
multiple machines, you can leave it running
in an SSH session on one, and quickly check
it to see if it’s being maxed out.

Monitor machine activity
Htop (http://htop.sf.net), meanwhile, is a
souped-up version of the top utility. Like top,
it displays information about currently
running processes, but with much more flair
and interactivity. As the program is running,
hit F4 to filter processes based on name
– or hit F5 to switch to a tree view, so you
can see which processes were launched by
other ones.

A series of bar charts at the top shows the
current usage of your RAM banks and CPU
cores, and you can hit F2 to configure
various settings in the program. Once you’ve

