
www.linuxvoice.com

CLOUDADMIN

68

V irtualisation is a key technology that
helped give birth to the modern
cloud as we understand it. It helps

run the services on the cloud and often
helps build clouds too. But virtualisation is
also important to developing tools to run
clouds. As our foray into the ‘dev’ part of
devops has already led us to look at how
continuous integration is used (see LV002)
we should also take a look at the
virtualisation technologies commonly in use,
their alternatives, and how they may differ
from your experience on the desktop.

KVM
KVM works on top of Qemu, so for the
purists, when we talk about KVM here we
mean KVM/Qemu. KVM is a Linux-only
virtualisation technology, parts of which are

included in the mainline kernel. The software
relies on kernel modules to interface with the
host CPU’s virtualisation extensions – as
such it will only run on CPUs that support
(for example) Intel VT or AMD-V extensions
(there is also an ARM port).

Popularity of KVM has not been driven by
the desktop – it still lacks a lot of the snazzy
configuration tools of VirtualBox – but it is
very very popular for ‘serious’ use due to
factors such as kernel integration and the
unambiguous open source nature of the
code (not to mention that it works very well).

Although it lacks somewhat in terms of
graphical tools, VMs are controllable from
the command line (and therefore, also easily
by scripts and other software which uses
the libvirt API – see our tutorial on page 94)
to a greater degree than pretty much anyone

Virtualisation: the options
There are many shades of hypervisor.

Virt-manager is a useful graphical front-end for KVM, but you should really familiarise yourself with
the virsh commandline tools, especially if you need tricky network setups.

A popular choice for desktop users, Oracle’s
VirtualBox has some good things going for it in
the developer space too.

Running make-believe boxes is virtually compulsory, suggests Nick Veitch.
CLOUDADMIN

“Vagrant was originally developed to work with
VirtualBox, but a system of plugins enable it to
work with numerous hypervisors.”

could ever want. As well as being a great
tool for development, it is also widely used
for spinning up VMs within clouds (eg
OpenStack).

VirtualBox
VirtualBox came to prominence by virtue of
it being a very featureful, well performing VM
hypervisor that worked cross-platform and
had an easy to understand management
interface. The software has a colourful
history – the original company that created
it, Innotek, was acquired by Sun
Microsystems, before many parts of the
disintegrating Sun empire were snapped up
by Oracle. As a largely open source project
(there is a non-open source version, which
makes use of proprietary device drivers for

VMWare
No, we didn’t forget about VMWare.
Although it has been in the vanguard of
virtualisation technologies for some time,
VMWare is not open source. Although that
doesn’t exclude it from consideration in
the world at large, it does tend to make
it less relevant to the emerging cloud
platforms, and certainly a little out of the
scope of this FLOSS-loving publication.

www.linuxvoice.com

CLOUDADMIN

69

Vagrant is an effective tool for provisioning
VMs and working collaboratively.

Linux containers are not a VM, and that is the
whole point!

graphics, and the open source version
seems to be stuck on an LGPLv2 licence) it
sits a little ill at ease in the Oracle stable.

Nevertheless it is a mature and
competent environment for running VMs. It
relies a lot on paravirtualisation – special
drivers that allow a more efficient
throughput of data to and from the host OS.
These do bring performance benefits, but
rely somewhat on the co-operation of the
guest OS, so if you are running custom
kernels on strange distros you may not reap
the full benefits.

It does have the huge advantage of also
running on Mac OSX and Windows (and
even Solaris), which can be beneficial in
some collaborative environments.

Vagrant
Vagrant isn’t a virtualisation engine, but it is
most definitely worth talking about. The idea
behind vagrant is that it becomes a sort of
meta-manager for virtualised instances.
Vagrant was originally developed to work
with VirtualBox, but a system of plugins
enable it to work with numerous hypervisors.
Once you have installed Vagrant, you can
fetch virtual machine images (which in
Vagrant terms are known as ‘boxes’) and use
them to bring up virtual machines.

You may ask yourself “What on earth is
the difference between this and just creating
a machine in VirtualBox)?”. The answer, at
least at the system level, is “not much”. Start
up your box, and it behaves pretty much like
any other VM you have initiated with

VirtualBox (or Qemu/KVM if you use that as
the back-end).

The real difference is in provisioning. If you
spend your life testing software, bringing up
a clean VM is only part of the day-to-day
grind. You then have to prepare that system
for use. This ranges from the mundane
installation of dependency packages to the
more annoying repeatedly setting up options
like host configuration or adding SSH keys
so you can access the VM you created.

Yes, you can do this once in something
like VirtualBox and create a snapshot image.
Before you know it though you have half a
dozen different snapshots that all differ in
subtle ways, and aside from taking up loads
of disk space, it can get pretty confusing. By
using Vagrant to provision systems from a
common set of boxes, you can reduce
changes to your install to just changing
some options in the Vagrant file that the
software uses to bring up the VM. Of course,
you can still create your own boxes, and
there is a new service specifically for sharing
those images in the cloud, so collaboration
is much easier than trying to shift gigabytes
of VM filestorage around.

Linux containers (LXC)
LXC is not a hypervisor for virtual machines.
It is better than that; well, at a lot of things
anyhow. LXC uses some very useful
user-mode kernel features to containerise an
implementation of a Linux OS – think chroot,
but taken to extremes. Like a virtual machine,
the container is able to carry out its business
independently of the host OS, even to the
point of running a different OS entirely. What
you get is a self-contained running instance
that is separate from the host OS, but which
can dynamically share resources – there is
no need to pre-allocate RAM and disk space
for example, because the LXC container will
simply consume what it needs just like any
other process. LXC also plays nicely with
libvirt, so you can use the same tools to

control containers as you may use with VMs
(though to be fair, there are some
peculiarities of LXC that aren’t adequately
addressed by libvirt, but you can also use the
comprehensive LXC command line tools).

As there is no CPU or hardware
virtualisation, there is a much lower overhead
to running containers than VMs – there are
no virtualisation layers to go through, so
things like file access are much faster, and
the scalable resources also mean that more
efficient use can be made of hardware.

There are of course, disadvantages to
using containers. For a start, you can only
run Linux-based containers. It can even
sometimes be tricky to run completely
different distributions without additional
tinkering. Added to that, the lack of
virtualisation also means no virtual
hardware – which can be a pain when it
comes to configuring networking. For
simple networks, LXC makes use of a
bridged driver, which means the container
can access an external network through the
host’s network setup, but complicated VLAN
topologies become more troublesome.
There can also be some nagging suspicions
that what may work in a container could
behave differently on real hardware. Gosh,
not that anyone has real hardware!

LXC arguably has the most mature
support on Debian and derivative distros,
and is well worth experimenting with.

The virtual future
It sometimes seem mad that we run an OS
on virtual machines through cloud software,
which itself can be running on virtual
machines, which themselves can be running
on the very same OS. Don’t think about it too
much, it hurts. The point is that VMs (and
containerisation) provide the essential
flexibility of cloud implementations, and as
the overhead associated with them gets
smaller, they become more and more
important enablers of future technologies.

Further reading
Why Vagrant? https://docs.vagrantup.
com/v2/why-vagrant/index.html
Stephane Graber’s LXC primer
https://www.stgraber.org/2013/12/20/
lxc-1-0-blog-post-series
Using KVM with Ubuntu https://help.
ubuntu.com/community/KVM
VirtualBox homepage
https://www.virtualbox.org

Docker
Missing from this VM get-together
is Docker. Like LXC, Docker is a
containerisation solution, and we have
left it out because we will be having a very
detailed look at it next issue!

