V CODING GOOGLE SCRIPT

LINUX

CODING TUTORIAL

GRAHAM MORRISON

106

GOOGLE SCRIPT YOUR
GROCERY BUDGET

Forget boring accounting software. Code your own
cloud-enabled budgeting script instead.

e're the first to admit we feel
uncomfortable with the amount of data
that Google is gathering on every aspect of

our lives. Many of us on the team are making a
concerted effort to move away from some of their
services — especially when it comes to location
tracking, context searches and personal information
(facial recognition, social interaction and profile
analysis). But we're also not the types to throw babies
out with their bath water. Google has done, and still
does, many good things for Free Software, and many
of its services are genuinely useful.

And one of the most useful is its scripting engine,
known colloquially as Google Apps Script, and there
are two reasons why we think it's worth the effort of

using. The first is that the scripts themselves are easy
to write. The language is very similar to JavaScript,
and while we accept that JavaScript is just as difficult
as any other language if you want to become a
master, for casual use it can be straightforward, quick
and easy. It's widespread enough that many people
will have come across it while hacking their own
websites, and Google has also done a good job at
documenting the various APIs that allow its scripting
engine to access and process your data.

The second redemptive excuse we're offering is that
you can schedule scripts to run automatically at any
time, and unlike your network attached storage box,
your Raspberry Pi or low-end-Linux machine, Google's
servers rarely suffer outages and come for free.

1 PROJECT ORIENTATION

To help illustrate what Google's Apps Script is capable
of, and how you might best be able to use it, we're
going to create a budgeting system for managing
grocery expenditure. The idea is simple; set yourself a
budget for each month, and whenever you go to the
shops and buy something from your budget, you log
the amount. The remaining budget is calculated and
is sent via a weekly report telling you how much
you've spent and how much you've got left to spend.

Thanks to Google, lots of the complexity is
handled for us. To log spending we'll use a Google
spreadsheet. These work extremely well from most
smartphones, and from any Android device in
particular, so it's no hassle adding totals as you go
along. As it's a Google spreadsheet, you can also
share it with other people, who will then be able to add
and manage spending themselves. This is a great
solution for a typical household.

We'll construct the spreadsheet in such a way
that the data we place into it is easily accessible
(through Google's APII) to the script we'll write to tie
everything together. We'll then write the script to take
the important parts of this data, such as the total,
the budget, when the cash was spent and how much
you'd like to spend, and then write some simple logic
around the calculation before outputting a verdict
on your spending. The whole script can then be
scheduled to run and email one or more people with
the results at a specific time.

We feel bad writing this, but you'll need a Google
account first. From there, you'll need to click on your

www.linuxvoice.com

At@&a % <. 00842

A ™ ~ Cells Fonts B

A B
1 Date Amount m
2 04/07/2013 B cado
3 06/07/2013 11.72 co-op
4 07/07/2013 16.82 co-op
5 08/07/2013 28 Sainsb
6 11/07/2013 101.57 Ocado
7 15/07/2013 16.1 co-op
8 18/07/2013 125.75 Ocado
9 23/07/2013 14.04 co-op
10
11

You can keep on top of your finances from your phone,
your tablet or your laptop with equal ease.

GOOGLE SCRIPT CODING V

Google Drive button or go to http://drive.google.com.
This is Google's shared storage service that is now the
central repository for Google Docs too. We imagine
most readers will have a Google account already,

so this shouldn't be too much of an issue, but we
promise to revisit the subject if enough people would
like to see a solution using an open source service,
such as OwnCloud, rather than a Google service.

2 CREATING THE SPREADSHEET

From the Google Drive page, click on the large Create
button at the top-left and select ‘Spreadsheet’. A few
moments later, a blank untitled spreadsheet will
appear in your browser window. We've called ours
simply Iv_groceries by clicking on the unnamed value
at the top. Our solution has two sheets — one for
logging day-to-day expenditure and the other for
making the various calculations and for holding our
budget values. The first sheet is very easy to create,
and the best place to start is by giving the first three
columns a title each — ‘Date’, ‘Amount’ and ‘Where'.
You might also want to highlight these cells by
changing the justification, using a bold font or perhaps
a different background colour. This is the page you're
going to use to enter your expenditure, sometimes
from your laptop and sometimes from your phone or
tablet, so a clear layout will help you to be accurate.

Arrange your data

As you can tell from the three column names, the first
column is going to hold the date of the purchase.
Google spreadsheets have a data validation feature
that does two things for you.

B It will only allow a valid date to be entered. This
stops any rogue data creeping into our scripts,
obviating the need to write code to handle the
subsequent errors.

B The convenience of date formatting as you get a
pop-up calendar from which you can choose your
date. This is much easier to use than typing in a date
manually, and avoids any confusion over how a date
should be formatted.

To enable data validation, Shift+select every cell in
the first column beneath the title, and either right-click
and select Data Validation or select the Validation
option from the Data menu. A window will appear

Date Amount Where

16/04/2014}

Data validation

Use the ‘show help'’ field
to give your friends a little
clue about what you want
entered.

Cell range: Sheet11A2:A1000 22|

T e N6 0 s 6N &

Criteria: Date + isavaliddate +

P@35 arom=o

Oninvalid data: () Show warning (® Reject input
Appearance:

Show help: Enter a valid date

showing the cell range you've selected so you can
make sure the selection is correct (the first column is
‘A, and beneath this you need to select your criteria for
validation). Click on the first pop-up menu button and
select Date from the short number of input formats
that can be validated. Secondly, in the second pop-up
menu, make sure that 'Is A Valid Date' is the logical
operation automatically set for you. On the following
line, you can now choose to either show a warning if a
value isn't a date, or reject the input. We went for the
first option, as the second can be a little restrictive,
especially if you just want to delete a date completely,
as this isn't accepted as a standard date.

We don't make any formatting constraints for the
other two columns, although theoretically we could for
the second column, which is going to hold the value of
each expenditure. We don't use the third column,
‘Where', but we find this information is useful for
monitoring where you spend the most money and for
problem solving if you need to cross-check a purchase
against a bank statement. This is only the first sheet,
however, and we're going to create a lot more
functionality in the second sheet, which you can create
by clicking on the +' symbol at the bottom of the page.

V PROTIP

We used the new version
of Google's spreadsheet

for this tutorial - released
early March, but it should
also work on the older
version.

3 DATA PROCESSING

Before moving on to creating the second sheet, we
need to give them both names that are going to make
moving between them easier. We called our first sheet
Receipts, as the values were mostly read off grocery
receipts after buying something, and Budget for the
second sheet, which is what we're going to explain
now. You rename sheets by right-clicking on the tab at
the bottom of the current spreadsheet.

We're going to create four columns in the second
sheet, all of which are going to be for the convenience
of our script rather than for direct use — although
they'll also provide a good overview of your annual

and monthly spending. To make sure everything
works, we'd highly recommend creating some dummy
data back on the first sheet so that when we add
some calculations (and eventually the script), they'll
have some real numbers to work on and you can
judge on the feedback whether everything is working
correctly. After you've done that, switch back to the
second sheet. The first two columns will hold a
reformatted month string and the total expenditure
during that month, and we can create both using a
formula. Double-click on the A1 cell (the first one on
the sheet), and enter the following:

www.linuxvoice.com 107

V CODING GOOGLE SCRIPT

A B

C D E

F G H

=query(index(t
year (A)+(month(A)+1)/100

B), "select year(A)+(month(A)+1)/100,sum(B) where A is not null group by year(A)+(month(A)+1)/100 label

'"Month',sum(B) 'Total’ ”)|

2014.02

7

11 389 400 February

Google doesn't provide
much error feedback, so
you need to make sure all
brackets and quotation
marks are correct when
entering a query.

V PROTIP

You can show all
formulae running on a

spreadsheet by selecting
the option from the ‘View
menu, making problem
solving a little easier.

’

108

=query(index(Receipts!A:B), “select
year(A)+(month(A)+1)/100,sum(B) where A is not null group by
year(A)+(month(A)+1)/100 label year(A)+(month(A)+1)/100
‘Month’,sum(B) ‘Total')

If you're familiar with spreadsheets, and Google's in
particular, you'll know that you can access data
contained within its sheets using a ‘'select’ statement,
just as you would a database. And that's exactly what
we're doing here. The reason why we're doing it this
way is because it gives us greater flexibility in how we
handle the return values. Here's what it does, broken
down into chunks of functionality:
=query(index(Receipts'A:B),

This basically grabs an array of values from both
the A and B columns of the ‘Receipts’ sheet on your
spreadsheet. ‘Receipts’ need to be the same the name
of your first sheet. The data from the two columns, A
and B, is then passed on to the ‘select’ statement, for
first part of which we'll tackle next:
select year(A)+(month(A)+1)/100,sum(B) where A is not null

Date formatting

For our eventual script to work without any extra
effort, we need the month to be formatted in a specific
way: 2014.05, for May 2014, for example. Not only
does this help with sorting, but it's easier to process
as it appears as a floating point number.

The above command creates that formatting by
taking the year and month from the first column (A),
and pushing the numeric value for the month through
a division by 100 to push the two digits to the right of
the decimal place. We're also selecting the
corresponding value in the adjacent column.

group by year(A)+(month(A)+1)/100 label
year(A)+(month(A)+1)/100 ‘Month’,sum(B) ‘Total’ “)

This is the remainder of the query. The group by
makes sure that the same months are grouped
together and with a label that's the same as the
calculation — this will be the value itself. And to the
right of this we place the total sum(B) for all the
expenditure from that month, along with two titles for
the two columns that are created. If you've created
dummy data on the first sheet, you should see an
entry in the first column for each month of
expenditure, along with a total for that month in
column B.

We now need to add three extra columns. In
column 6, or 'E' on the sheet, we're going to type the
word for each month starting with January in E2 and
ending with December in E13. This is a cheat, so we
can email the word for the month from the script. In
the column to the left of this, ‘D', enter the budget you
want your spenders to adhere to for each month.
We've done this for each month separately in case
you wanted more budget for Christmas or birthdays.
Finally, to the left of the budget column, we're going to
enter a calculation to work out how much money
you've got to spend in each month. This is as simple
as subtracting the contents of the cell to its left (the
total for the month), from the contents of the cell to its
right (the overall budget for that month). To do that,
double-click in the second cell in column C and type
=SUM(D2-B2). You can easily copy and paste the
formula so that it changes to reflect the left and right
cells of each new position by dragging the blue border
surrounding the cell down the column.

4 WRITING THE CODE

The final step is to write the JavaScript-like code to
take the data from our spreadsheet and email it to
ourselves. To create a script from the spreadsheet,
choose ‘Script Editor’ from the Tools menu. This
opens a new editor window containing a simple
template function called ‘'myFunction’. Here's the first
bit of code — place all this code between the curly
brackets of the function:

var sheet = SpreadsheetApp.openByld(“1dWqQha3E");

var budget = sheet.getSheetByName(“Budget”);

All this code is doing is opening the spreadsheet we
opened earlier. The value within the double quotes is
the reference to the spreadsheet, and you need to get
this from its URL — it's the value that appears where
the **** i in the following line, but this might depend
on the version of sheets that you're using. Either way,
the unique identifier for your spreadsheet should be

www.linuxvoice.com

fairly obvious within your spreadsheet's URL:
https://docs.google.com/spreadsheets/d/****/
edit#gid=1426067592

The next few lines of code are going to make a few
assignments to get the current date and implement
an offset. We're assuming your budgeting starts in
January, but if it doesn't, change the first startmonth
value to your start month number. You'll also need to
offset the word list on the spreadsheet.
var startmonth = 0;
var date = new Date();
var month = date.getMonth();
month = (month - startmonth) + 2;

We're now going to grab some data from the
spreadsheet, first by using the getRange method with
the month variable to specify the row and ‘3’ for the
‘Remaining’ column. This value will then be appended

to a string we'll use as the subject line in the email, as
well as within the body of the email later:

var dataRange = budget.getRange(month,3);

var data = dataRange.getValues();

var remaining = parseFloat(data);

remaining = remaining.toFixed(2);

var subject = “Grocery Budget Remaining: “ + remaining;

We'll cheekily use the same trick to add the text
string for the month, taken from the fifth column in
the spreadsheet:
dataRange = budget.getRange(month,5);
data = dataRange.getValues();
var message = “Month: “ + data + “\n”;

Add to the body of the message by grabbing the
total spend value and putting this in along within the
message before adding the total budget for the month:
dataRange = budget.getRange(month,2);
data = dataRange.getValues();
var total = data;
dataRange = budget.getRange(month,4);
data = dataRange.getValues();
message = message + “Total spend: “ + total + “\n\n";
message = message + “Budget: “ + data + “\n\n";

Now we've got all the variables together, we can
write a quick conditional expression that changes
the text of the message depending on whether
you're under or over budget, leaving the final step to
be the sending of the email itself. This is remarkably
simple from Google App Script, as you simply call
the sendEmail method from MailApp, using an email
address with both the subject and message variables
to handle everything else. Obviously, you'll want the

5 RUNNING THE SCRIPT

You're now at the point where you can run the script.
To do this, just click on the small black ‘Play’ button in
the script editor toolbar. The first time you run the
script, you'll be asked to authorise its access to the
spreadsheet and to your email account, which is
where the email will appear to originate from. With a
bit of luck, a few moments after validation the script
will execute and you should see an email like this:
Subject: Grocery Budget Remaining: 217.50

Month: April

Total spend: 182.5

Budget: 400

Great work! We're under budget!

Congratulations! It works! All that's now left to do is
schedule the script to run at a time that makes best
sense for you. This is accomplished through Google's
trigger system, which can be enabled by going to the
script editor, clicking on the ‘Resources’ menu and
selecting ‘Current Project’s Triggers'. A wide window
will include the text ‘Click Here To Add One Now', and
when you click on that, you can select a ‘Time-driven’
event to run on a ‘Week Timer', 'Every Sunday’ at a
specific time, or whatever day/time work best for you.

GOOGLE SCRIPT CODING V

B OO » & sendGroceryEmails -
* Code.gs

function sendGroceryEmails() {
var sheet = SpreadsheetApp.openById("*#xxxx");
var budget = sheet.getSheetByName("Budget”);

1

2

3

4

5 var startmonth = @;

6 var date = new Date();

7 var month = date.getMonth();

8 month = (month - startmonth) + 2;
10 var dataRange = budget.getRange(month,3);
1 var data = dataRange.getValues();
12 var remaining = parsefFloat(data);

13 remaining = remaining.toFixed(2);

14

15 var subject = "Grocery Budget Remaining: " + remaining;
16 var message;

18 dataRange = budget.getRange(month,5);
19 data = dataRange.getValues();

21 message = "Month: " + data + "\n";

23 dataRange = budget.getRange(month,2);
24 data = dataRange.getValues();

26 var total = data;

28 dataRange = budget.getRange(month,4);
29 data = dataRange.getValues();

31 message = message + "Total spend: " + total + "\n\n";
32 message = message + "Budget: " + data + "\n\n";

34 if (total < data)

35 message = message + "Great work! We're under budget!\n";
36 else
37 message = message + "Oh no! We've gone over budget!!\n";

39 MailApp.sendEmail("graham@linuxvoice.com);

email address to be your own, entered carefully,
because the nightmare of being blacklisted for mail
bombing your budgets from Google's servers isn't
worth the potential embarrassment:
if (total < data)

message = message + “Great work! We're under budget!\n”;
else

message = message + “Oh no! We've gone over budget!!\n";
MailApp.sendEmail (“graham@linuxvoice.com”,subject,
message);

Iv_groceries -~

This app would like to:

g View and manage your spreadsheets in Google a
2 Drive w
Send email as you ;i]

v_groceries and Google will use this information in accordance with their
respective terms of service and privacy policies.

Gancel m

You can even use a trigger to send an email whenever

the spreadsheet is opened or changed, giving you
the awesome cloud control for your budget, and
ultimately, more money to spend on beer. @

Graham Morrison left eBay off this budget spreadsheet

to hide the amount he spends on vintage synthesizers.

www.linuxvoice.com

Google's script editor has
syntax highlighting and an
effective debugger, which
can help if you find any
errors.

V PRO TIP

Use the ‘Share’ button to
allow other people to add

expenditure, and don't
forget to add their emails
to the script if you want
them to get a notification.

You'll need to give your
script permission to
access your spreadsheet
and to use your email
account.

109

