V. INTERVIEW DAMIAN CONWAY

DAMIAN
CONWAY

We meet the creator of a programming language
based on Klingon and one of the architects of
Perl 6. If only we could tell them apart...

amian Conway is one of the
DGuardians of Perl (our term)

and one of Perl 6's chief
architects. But he's chiefly a computer
scientist, a brilliant communicator
and an educator. His presentations
are often worth crossing continents
for. He was the Adjunct Associate
Professor in the Faculty of Information
Technology at Melbourne’s Monash
University between 2001 and 2010,

and has run courses on everything
from Regular Expressions for
Bioinformatics to Presentation Aikido
(and of course, lots of Perl). Which

is why, when we discovered he was
making a keynote at this year's QCon
conference in London in March, we
braved train delays and the sardine
travelling classes of the London
Underground to meet him opposite
Westminster Abbey.

The main reason we wanted to

talk to you is that we want to
try to simplify people’s experience of
programming and computers. John
Horton Conway said recently that
his Game of Life is the blight of his
life because he had gone on to do so
much more interesting and
important work. But what struck us
by what he said about the attraction
to the game is its simplicity and the
fact that that goes on to teach
things that you could not possibly
imagine. So with that in mind, is
there something like that for
programming, how does that fit with
Perl, and is Perl for people that think
like that in the first place?
Damian: That is a huge question! There
is almost an industry in making
programming seem more difficult than
itis. Programming doesn't have to be
really complicated. The problems we
solve are complicated, and at the scale
we have to code things become
complicated, but the basic tools of
programming are not complicated
things. And learning the patterns of use
of those tools that work, that scale, that
are robust, reliable and maintainable,
isn't really that difficult. This is really not
rocket science. This is not quantum
mechanics. This is not that difficult.

44

But it can be. There was pride

in the Perl community when
you showed the Turing machine
running in this much [gesticulation
to show a tiny thing] code.
Damian: Sure, but that's a game. To
me, that's just that | make this happen
in that kind of way. It's been very
interesting for me. I've recently been
starting to put together classes on Perl
6, the new language in the Perl family.
And the thing about Perl 6 is that it just
feels like it's a lot more polished and
smooth than Perl 5 ever was.

I mean, | love Perl 5 dearly, | do
almost all my work in Perl 5, but Perl 6
has all of the same features but with
the rough edges kind of knocked off of
them. And what it gives you is the same
thing that Perl 5 has always given,
which is exactly the right tools to do the
job you want to do and not get in your
way. What | find when | change to
programming in JavaScript or C++or C
is that the language itself gets in the
way of my using the language.

I spend all my time coding around
either limitations in the language or a
particular mindset that makes you do it
in one particular way, and that's equally
true in Perl 5 on occasion. Perl 5 has
got real deficiencies that are only just, in
this very year, finally being addressed.

www.linuxvoice.com

“Programming doesn't
have to be complicated.
The problems we solve are
complicated, but the basic
tools of programming are
not complicated things.’

It's insane, for example, that in Perl 5,
until the release that's probably coming
out in May, we haven't had parameter
lists. Now this is an advanced
technology that was pioneered, what,
60 years ago, and we still haven't got
them. And so everyone who's writing
subroutines in Perl spends most of their
time simulating the behaviour
necessary for a parameter list. So
finally, with Perl 5.20 coming out this
year, we have parameter lists.

Every language that | code i, | find
these issues. A really good one is, this
afternoon I'm talking about regular
expressions, and | went through 20
different languages that supply regular
expression mechanisms. And in about
18 of them, the regular expression
mechanism is bolted on the side, so
you can't write a regular expression, you
have to write a string, which then gets
translated into a regular expression.

And that irritation leads to mistakes too.
You don't put the right number of
backslashes in, ‘cause it's a string, and
you've got to backslash all the
backslashes to get a single backslash.

But, to many of us, Perl looks

like a regular expression.
Damian: [laughs] Yeah, but this is kind
of the same thing. If | had just gotten up
on stage this morning and just shown
you Klingon sentences without
explaining the structure of them, the
syntax of them and how they come
together, then it would just look like line
noise. Alphabetic line noise, but line

“In most programming
languages there's a relatively
small amount of syntax.

noise. And the thing about Perl is, in the
very early design of Perl, a decision was
made that there would be lots of
syntactic differentiation. In most
programming languages, there's only a
relatively small amount of syntax. There
are identifiers, there are a couple of
operators and there's probably a
method call mechanism, and then we
do everything with that.

In Lisp it's even more extreme. In Lisp
there's just comments and atoms,
basically. But in Perl the decision was
made very early on that we would use
as much of the keyboard as possible,
so that once you knew what a particular
element in the Perl syntax meant, it
would stand out for you immediately.
So when I read Lisp, and | can read Lisp
and write Lisp, and I've taught Lisp, but
there's always this mental gear shift
that has to go on because the language
isn't helping me see what the different

www.linuxvoice.com

DAMIAN CONWAY INTERVIEW V

components are. And | find that equally
true in Python, which is a lovely
language and has many many benefits.
But to me, in Python, everything looks
like a method call, because everything
is amethod call. Losing that syntactic
distinction makes it really really hard for
me to pick up on what's going on.

Now, the problem with that is that it
only works if you know the distinction in
the syntax. So people coming into Perl
get lost in this sea of ampersands and
stars and all sorts of other symbols that
we use in the language. And until you
get past and it sort of goes into your
hind brain and it just translates
immediately, ‘ah yes, that's a scalar
variable', ‘ah yes, that's a type blah, blah,
blah', it doesn't make sense. It looks like
line noise, and | fully agree.

So do you think it's better for
people who want to learn

45

‘:EE settle ogﬁﬂjﬁmg Pe‘fl»ﬂ

-~ programmer or just beulg aJava

ni?r"‘or just L tever

programming to dive into Perl
straight away?

Damian: | don't think it is. To be
perfectly honest, | think Perl 5 at least is
alousy first language. And the reason |
think that is that learning to program
isn't just about learning syntax. It's
about learning at six or seven different
levels at the same time. So the purely
lexical level of what character do | type
here, the syntactic level of what that
means, the semantic level of what does
the construct that this represents
mean, the algorithmic level of how do |
put these things together to make
things work... for me it's like when | was
learning to juggle or to drive a car or any
other complicated multi-level activity. If
you think about learning to drive a car,
it's not just about how do | steer or how
do | push the accelerator pedal, it's also
about how aware | am on the road, how
I'm aware of what the car is doing, how
do | anticipate what's happening next,
how do | navigate at the same time and
how do | listen to the radio as well. And
for me, coding is exactly like that.

For nearly a decade, | taught the
introductory programming class at our
university, and | was forced to teach it in
C and C++ and Java and whatever it

46

was. But the key is always the same.
You have to give them a way of
focusing on one level of abstraction at a
time. And so the more syntax that the
language that they're using has, the
harder it is for them to focus on the
level of what does this mean, what
does it do and how do | make it do what
I want. | think from that point of view
there have been many CS programs
over time that have taught Lisp as their
first language. | think, in one sense,
that's a really good thing, because | can
tell you the syntax of Lisp in three
minutes, and from then on it's just
trying to understand how the
mechanisms work and how the
algorithms work.

So | don't think Perl 5 is a good
language for that. | think Perl 6 is a
better language because Perl 6 doesn't
need as much syntax to get the basic
stuff done. There's of acres of syntax in
the background but you don't need it
early on.

The UK government has

decreed this year as the Year
of Code. Its representative said that
it was possible to learn some code
in an hour. Talking to Robert

www.linuxvoice.com

V. INTERVIEW DAMIAN CONWAY

Lefkowitz on the subject, he thought
that programming is at a similar
stage to when spaces were
introduced between words in Latin
script, which opened up reading to
more people. And, similarly, stirrups
were fundamental to the feudal
system because they enabled riders
to wield a sword and shield.
Damian: Or the zero in the number
system.

Yes, exactly. So is that a
relevant question for Perl, or is
it better suited to Python or
JavaScript, say, and should we just
be teaching people concepts before
we teach abstraction?

Damian: Wow!

Sorry, I've had too much coffee
this morning.

Damian: No, these are fantastic and
deep and important questions. Let's go
back to the very beginning. Anyone who
believes you can teach programming in
an hour has no idea about what
programming is. I think that | finally
thought that | was a confident
programmer maybe about four or five
years ago, so after about a quarter of a
century of coding. | felt that I was an
ordinary good programmer by that
stage. | don't think you can even teach
HTML in an hour, to be brutally honest.

That's one of the very

examples they gave.
Damian: No, no. So there's a
fundamental misunderstanding about
how complicated a task it is that we do
when we do programming and how
quickly one ought to be able to do that
task. And | think we do a disservice if
we try and throw people in at the deep
end. And a lot of language choices
throw people in the deep end. | would,
for example, put JavaScript or Java in
that same category.

If you try to teach people Java, just
think about the Java ‘Hello World’
program, you see it online all the time.
The Java 'Hello World' program has a
class declaration and then it has a
method declaration, it has the loading
of libraries that make the thing work, it
then has the method call chain to
actually do that. And in order to even
understand the presumably simplest of
all programs, you have to understand

Java at about four different levels of
abstraction. You have to understand a
lot of very sophisticated concepts,
including things as simple as what's the
difference between static and non-
static. Now, a lot of good programmers
would not be able to tell you what the
difference between static and non-static
really is. So, a language like that, which
is often touted as being a relatively
simple language, actually isn't.

“Anyone who believes you can
teach programming in an hour
has no idea about programming.

So you can just dive in a

change things?
Damian: Yeah, and that's what people
do. They don't learn to program, they
learn to evolve or mutate existing
programs, and that's not the same skill
set. And, frankly, a lot of Perl developers
are like that as well. Their only exposure
to Perlis in existing large-scale scripts
on which their entire organisation
depends. And all that they're asked to
do is go in and make a small change to
that. They're not asked to develop, to
design, to build, to implement. It's
strictly about “let's twiddle”.

When you're looking for a language to
actually get people up and running, you
need a language that doesn't get in
their way, that allows them to think

about the abstractions of how to
express this series of instructions
clearly and unambiguously. In Perl or
Perl 6, Hello World is literally “say ‘Hello
World". The thing is, | can teach
someone to do that in 30 seconds, not
an hour, and | can go from there if 'm
very very careful about what | introduce
them to next. There are other
languages where you don't have to be
quite as careful because there just
aren't that many constructs, and they
have pitfalls as well.

What's important is that we do need
good programmers, we do need people
who can do this stuff, because our
entire society will utterly fall apart if we
do not have people that can maintain
our software. We are not a society that
can survive if our software goes down.
But to think that we can teach them in
an hour, or a day, or a week, or a month
or even a year, or the three years of the
standard program, is highly optimistic.

Does that mean that, in some

way, computer science has
failed if we still want people to
become expert scientists, when the
future promised us some pseudo-
code that we could just transfer our
thoughts to the computer?
Damian: Yes. The future promised us a
lot of things, didn't it! 'm still waiting for
my flying car.

But should programming become a
commodity? Eventually, for a large
number of people, it will be. We will find
ways whereby people can set up their
environments and have the behaviour
they want. But there's a fundamental
mistake there in thinking things that are
that complicated can be reduced down
to something so simple.

Considering the context of the
conversation, what do you
think is the ideal path? Is there an
ideal language to start with? How
would you recommend people get
started if you want to take them to
Perl nirvana?

Damian: Perl nirvanal! | can probably
only go by my own path and by the
paths that I've shown to my of students
over time. And for me, the most
important thing was diversity. Not being
stuck thinking this is one way that we
code. And | don't care if it's the one way
of Python, or the one way of Ruby, or

www.linuxvoice.com

DAMIAN CONWAY INTERVIEW V

the one way of JavaScript, or of Java, or
C, or C++ or anything. I think the
important thing is that if you want to
become an experienced programmer,
you need to be exposed to an
enormously wide range of ways of
thinking about coding. You need to be
exposed to functional programming
systems and imperative programming
systems and object-oriented
programming systems and declarative
programming systems and concurrent
programming systems. Because it's
only by opening up your mind to these
different views on the same reality that
you really see.

It's like back in the early days of
physics where everyone either just
thought of light as particles or just as
waves, and there was this enormous
fight over which one is it. Well, the
answer is both. And is programming a
purely functional activity or a purely
object-oriented activity or a purely
imperative activity or a declarative
activity? It's all of them. And what | try
to doin all of the syllabuses that | ever
put together and what | try to do for
myself in my own ongoing learning is
find new ways of thinking about what it
is that | do. How can | do functional
programming in C, for example? How
do | do object orientation in C? Well you
can do that it. It's not easy, but you can
do it. So, for me, it doesn't matter what
tool I'm looking at, what | want to know
is how can | think of this problemin a
way that makes the solution obvious
and simple and correct and robust. And
often that's just | need to look at it
entirely differently. And so what | would
encourage every young programmer,
and every old programmer as well, is
never give up.

Look at the new languages that are
coming out. Look at the Clojures, and
the Scalas and the Darts and the Gos,
and all of the different languages that
are constantly coming up. See what
they have to give you in the way of
insights about what programming
actually is. Because the only way you're
going to eventually understand what
this elephant looks like is if you feel the
various parts of it individually and
realise that they are simply parts of a
greater whole.

Brilliant. Thanks Damian.
Damian: My pleasure.

47

