'V TUTORIAL PYTHON & libvirt

VALENTINE SINITSYN

WHY DO THIS?

+ Automate virtual
machine maintenance
and management
processes.

« Batch-create virtual

appliances for clouds,
integration testing and
so forth.

+ Get to know the de-facto
standard virtualisation
toolkit for Linux.

Depending on the settings,
you may be asked to enter
the root password to use a
system connection.

94

CONTROL VIRTUAL MACHINES

LEIS WITH PYTHON AND LIBVIRT

Learn ways to automate VM management when GUIs
and simple shell scripts aren't enough.

user. And if you use Linux, you most likely know

what virtualisation is. Many mainstream
distributions include KVM and virt-manager these
days, and you can easily install Oracle VM VirtualBox,
Xen or such like. Usually, they provide some form of
GUI, so why on the Earth would you want to try
virtualisation from a Python script?

If you just want to try out a new distro, you probably
wouldn't. However, if you use several virtual machine
managers (VMMs, or hypervisors) in parallel, or create
pre-configured virtual machine appliances (say, for a
cloud deployment), Python may come in handy.

I fyou read Linux Voice, you are probably a Linux

Meet libvirt

Born at Red Hat as an open-source project, libivrt has
become an industrial-grade toolkit that provides a
generic management layer on top of different
hypervisors, using XML as a mediation language.

It's been adopted by many Linux vendors (if you have
virt-manager, you have libvirt) and has bindings for
many programming languages, including Python
(version 2 and, starting with libvirt-python 1.2.1,
Python 3). Libvirt can create (or “define’, in its
parlance), run (‘create”) and destroy virtual machines
(called “domains” here), provide them with storage,
connect them to virtual networks that are protected
by network filters, migrate them between nodes and
do other smart things.

However, libvirt has no convenient tools to work
with XML, so you'll need to know the format
(described at libvirt's website, www.libvirt.org) and
use xml.etree or similar. Let's see it in action. Install
libvirt's Python bindings (usually called python-libvirt

File w Bookmar

ttings Help

(ORSRORE

System policy prevents management of
- local virtualized systems

jication i tion that
requires privileges. Authentication is required to
perform this action.

| System policy prevents managemen...

Password for root:

¥ Remember authorization

|| For this session only

@ petais >> | [vox][@conce

www.linuxvoice.com

or alike) and open an interactive Python shell (>>>
denotes prompts in the listings below). No root
privileges are initially required, but you may be asked
to obtain them when needed.

$ python

>>> import libvirt

>>> conn = libvirt.openReadOnly(‘qemu://system’)

Here, we import the libvirt module and open a
connection to the hypervisor specified by the URI (note
the three slashes). In this tutorial we'll work with
Qemu/KVM, which is probably the most ‘native’ VMM
for libvirt. /system means we connect to a local
system-level hypervisor instance. You may also use
gemu:///session to connect to the local per-user
Qemu instance, or gemu+ssh:// for secure remote
connections. We are not going to define new domains
now, so the restricted read-only connection will suffice.

For starters, let's check what your host is capable of
when it comes to the virtualisation:
>>> xml = conn.getCapabilities()
>>> print xml
<capabilities>

<host>
<uuid>20873631-dad7-dd11-885a-08606eda31ae</uuid>
<cpu>

<arch>x86_64</arch>

<model>Westmere</model>

<vendor>Intel</vendor>

<topology sockets="1" cores="4' threads="1"/>

<feature name="vmx'/>

</capabilities>

You see how the XML is used to describe the host's
capabilities. Libvirt identifies objects (hosts, guests,
networks etc) by UUIDs. My host is a 64-bit quad-core
Intel Core i5 with hardware virtualisation (VMX)
support. Your results will likely be different.

The XML is quite long (note the ellipsis). Here's how
you can use xml.etree to get supported guest domain
types and corresponding architectures fromit:
>>> from xml.etree import ElementTree
>>> for guest in tree.findall(‘guest’):

. arch = guest.find(‘arch’).get(‘name’)
... domain_type = guest.find(‘arch/domain’).get(‘type’)

My stock Ubuntu 13.10 supports Qemu domains
only. However, since Qemu is a generic emulator, | can
virtualise almost anything including s390x or SPARC
(albeit at a performance penalty). x86_64 and i686 are
of course supported, too.

PYTHON & libvirt TUTORIAL V

It's good to know that you can create a domain for
any conceivable architecture, but how do you actually
do it? First of all, you'll need some XML to describe the
domain. For simple cases, it may look like this:
<?xml version="1.0"2>
<domain type='qgemu’>

<name>Linux-0.2</name>
<uuid>ce1326f0-a%9a0-11e3-a5e2-0800200c9a66</uuid>
<memory>131072</memory>
<currentMemory>131072</currentMemory>
<vepu>1</vepu>
<0S>
<type>hvme</type>
<boot dev="hd'>

</os>
<devices>
<disk type="file’ device="disk’>
<source file="/path/to/linux-0.2.img'/>
<target dev="hda’>
</disk>
<interface type="network’>
<source network='default’/>
</interface>
<graphics type="vnc’ port="5900'/>
</devices>
</domain>

Speak the domain language
Here, we create a Qemu/KVM (hvm) virtual machine
with one CPU and 128MB of RAM. It has a hard disk at
IDE primary master (hda), from which it boots (I've
used the tiny Linux 0.2 image from the Qemu Testing
page). It is connected to the “default” network
(NAT-enabled 192.168.122.0/24 attached to virbr0 at
the host side), and you can use VNC at port 5900/tcp
to access its screen (try vinagre localhost:5900 or
similar). Note that the <source file="..."/> must contain
an absolute path to the image, and the image format
must be supported by the hypervisor. libvirtis not a
tool to create disk images, however you can use
pyparted, ubuntu-vm-builder or similar to automate
this process with Python.

Domains in libvirt are either transient or persistent.
The former exist only until the guest is stopped or the

host is restarted. Persistent domains last forever and
must be defined before start. A transient domain will
do for now, but as we are going to create something, a
read-only connection is no longer sufficient.

import libvirt

xml = “"domain definition here™

conn = libvirt.open(‘qemu://system’)

domain = conn.createXML(xml)

Yeah, that's all. However, if you try to execute this
script, you may get this response:
libvirt: QEMU Driver error : internal error: Network ‘default’ is not
active.

This is because the XML references the “default”
network, which won't be active unless there are
domains using it already running, or you have marked
it as autostarted with virsh net-autostart default
command. Insert the following code just before
conn.createXML() call to start the network if it is not
already active:
net = conn.networkLookupByName(‘default’)
if not net.isActive():

net.create()

First, we get an object representing the “default”
network. libvirt can look up objects by names, UUID
strings (ce1326f0-a9a0-11e3-a5e2-0800200c9a66)
or UUID binary values (UUID(‘ce1326f0-a9a0-11e3-
a5e2-0800200c9a66').bytes). Corresponding method
names start with the object’s type (except for domains)
followed by “LookupByName”, “LookupByUUIDString”
or “LookupByUUID", respectively.

Network objects provide other methods you may
find useful. For instance, you can mark a network as
autostarted with net.setAutostart(True). Or, you can
get an XML definition for the network (or any other
libivrt object) with XMLDesc():
>> print net.XMLDesc()
<network>

<name>default</name>
<uuid>9d3c0912-6683-4128-86df-72f26847d9d3</uuid>

</network>
If we were going to create a persistent domain, we'd
change conn.createXML() to:
domain = conn.defineXML(xml)
domain.create()

There and back again

libvirt is essentially a sophisticated translator from
a high-level XML to low-level configurations specific
to hypervisors. Sometimes you may want to see
what libvirt generates from your definitions. You

can do this with:

>>> print conn.domainXMLToNative(‘qemu-argv’, xml)

LC_ALL=C PATH=... QEMU_AUDIO_DRV=none /ust/bin/
gqemu-system-x86_64 -name Linux-0.2 ... -m 128 ... -smp
1,sockets=1,cores=1,threads=1 -uuid ce1326f0-a9a0-11e3- a5e2-
0800200¢9a66 ... -vnc 127.0.0.1:0 -vga cirrus...

Other times, you may be unsure how to express

some VM configuration in XML, or you may have the
configuration autogenerated by another front-end.
libvirt can convert a native domain configuration to
the XML with:

>>> argv="LC_ALL=C PATH=... QEMU_AUDIO_DRV=none /usr/bin/
gemu-system-x86_64 -name Linux-0.2 ... -m 128 ... -smp
1,sockets=1,cores=1,threads=1 -uuid ce1326f0-a9a0-11e3-a5e2-
0800200c9a66..."

>>> print conn.domXMLFromNative(‘qemu-argv’, argv)

<domain type="gemu’ xmlIns:qemu="http:/libvirt.org/schemas/
domain/qemu/1.0'>

<name>Linux-0.2</name>
<uuid>ce1326f0-a9a0-11e3-a5e2-0800200c9a66</uuid>
<memory unit="KiB'>131072</memory>
<currentMemory unit="KiB'>131072</currentMemory>
<vepu placement="static'>1</vcpu>
<0s>

<type arch="x86_64" machine="pc’>hvm</type>
</os>

</domain>

You can also use virsh domxml-to-native and virsh
domxml-from-native commands for the same
purposes.

www.linuxvoice.com 95

'V TUTORIAL PYTHON & libvirt

96

(remember that persistent domain creation is a
two-phase process). To gracefully reboot or shutdown
the domain, use domain.reboot() and domain.
shutdown(), respectively. However, the guest can
ignore these requests. domain.reset() and domain.
destroy() do the same, albeit without guest 0S
interaction. When the domain is no longer needed, you
can remove (undefine) it like this:
try:

domain = conn.lookupByUUIDString(‘ce1326f0-a9a0-11e3-
a5e2-0800200c9a66')

domain.undefine()
except libvirt.libvirtError:

print ‘Domain not found’
lookup*() throws libvirtError if no object was found,
many libvirt functions do the same. If the domain is
running, undefine() will not remove it immediately.
Instead, it will make the domain transient. It is an error
to undefine a transient domain.

When you are done interacting with the hypervisor,
don't forget to close the connection with conn.close().
Connections are reference-counted, so they aren't
really closed until the last client releases them.

Get'em all
Alibvirt system may have many domains defined, and
there are several ways to enumerate them. First,
conn.listDomainsID() returns integer identifiers for the
domains currently running on a libvirt system (unlike
UUID, these IDs aren't persisted between restarts):
for id in conn.listDomainsID():

domain = conn.lookupByID(id)

If you need all domains regardless of state, use the
conn.listAllDomains() method. The following code
mimics the behaviour of the virsh list --all command:
print‘ld Name State’
print =" * 52
for dom in conn.listAllDomains():

print “%3s %-31s%s" %\

(dom.ID() if dom.ID() > 0 else *-',

dom.name(),
state_to_string(dom.state()))

For domains that aren’t running, dom.ID() returns
-1. dom.state() yields a two-element list: state[0] is a
current state (one of libvirt.VIR_LDOMAIN_*
constants), and state[1] is the reason why the VM has
moved to this state. Reason codes are defined
per-state (see virDomain*Reason enum in the C AP
reference for the symbolic constant names). The
custom state_to_string() function (not shown here)
returns a string representation of the code.

Domain objects provide a set of *stats() methods
to obtain various statistics:
cpu_stats = dom.getCPUStats(False)
for (i, cpu) in enumerate(cpu_stats):

print ‘CPU #%d Time: %.2If sec’ % (i, cpul‘cpu_time’] /
1000000000.)
This way, you get a CPU usage for the domain (in
nanoseconds). My host has four CPUs, so there are

www.linuxvoice.com

Your mileage may vary

You may expect libvirt to abstract all hypervisor details
from you. It does not. The APl is generic enough, but
there are nuances. First, you'll need your guest images
in a hypervisor-supported format (use gemu-img(1) to
convert them). Second, hypervisors vary in their support
level. Qemu/KVM and Xen are arguably the best supported
options, but we had some issues (like version mismatch or
inability to create a transient domain) with libvirt-managed
VirtualBox on our Arch Linux and Ubuntu boxes.

The bottom line: libvirt is great, but don't think you can
change the hypervisor transparently.

four entries in the cpu_stats array. dom.
getCPUStats(True) aggregates the statistics for all
CPUs on the host:

>>> print dom.getCPUStats(True)

[{'cpu_time’: 10208067024L, ‘system_time’: 1760000000L,
‘user_time': 5830000000L}]

Disk usage statistics are provided by the
dom.blockStats() method:
rd_req, rd_bytes, wr_req, wr_bytes, err = dom.blockStats('/path/
to/linux-0.2.img’)

The returned tuple contains the number of read
(write) requests issued, and the actual number of bytes
transferred. A block device is specified by the image
file path or the device bus name set by the devices/
disk/target[@dev] element in the domain XML.

To get the network statistics, you'll need the name
of the host interface that the domain is connected to
(usually vnetX). To find it, retrieve the domain XML
description (libvirt modifies it at the runtime). Then,
look for devices/interface/target/@dev] element(s):
tree = ElementTree.fromstring(dom.XMLDesc())
iface = tree.find(‘devices/interface/target’).get(‘dev’)
rx_bytes, rx_packets, rx_err, rx_drop, tx_bytes, tx_packets, tx_err,
tx_drop = dom.interfaceStats(iface)

The dom.interfaceStats() method returns the number
of bytes (packets) received (transmitted), and the
number of reception/transmission errors.

A thousand words’ worth
Imagine you are making a step-by-step guide for an
OS installation process. You'll probably do it in the
virtual machine, taking the screenshots periodically. At
the end of the day you will have a pack of screenshots
that you'll need to crop to remove VM window
borders. Also, it's pretty boring to have to sit there
pressing PrtSc. Luckily, there is a better way.

libvirt provides a means to take a snap of what is
currently on the domain's screen. The format of the
image is hypervisor-specific (for Qemu, it's PPM),
however, you can use the Python Imaging Library (PIL)
to convert it to anything you want. To transfer image
data from the VM, you'll need an object called stream.
This provides a generic way to exchange data with
libvirt, and is implemented by the virStream class.
Streams are created with the conn.newStream()
factory function, and they provide recv() and send()

methods to receive and send data. To get a stream
containing the screenshot, use:
stream = conn.newStream()
dom = conn.lookupByUUID(UUID(‘ce1326f0-a9a0-11e3-a5e2-
0800200c9a66').bytes)
if dom.isActive():

dom.screenshot(stream, 0)

Here, we lookup the domain by a binary UUID value,
not a string (the UUID class comes from the uuid
module). We check that the domain is active
(otherwise it has no screen) and ignore other possible
errors. Now we need to pump the data to the Python
side. virStream provides a shortcut method for this
purpose:

buffer = Stringl0()
stream.recvAll(writer, buffer)
stream.finish()

Here, we create a StringlO file-like object to store
image data. stream.recvAll() is a convenience
wrapper that reads all data available in the stream.
writer() function is defined as:
def writer(stream, data, buffer):

buffer.write(data)

Its third argument is the same as the second
argument in recvAll(). It can be an arbitrary value, and
here we use it to pass the StringlO() buffer object.

All that remains is to save the screenshot in a
convenient format, like PNG:

from PIL import Image
buffer.seek(0)

image = Image.open(buffer)
image.save(‘screenshot.png’)

PIL is clever enough to autodetect the source image
type. However, it expects to see the image data from
byte one, that's why we use buffer.seek(0).

You can easily wrap this screenshotting code into a
function and call it periodically, or when something
interesting happens to the VM.

You've got a message

When something happens to a domain, for example it
is defined, created, destroyed, rebooted or crashed,
libvirt generates an event that you can subscribe to
and act appropriately. To be able to receive these
events, you'll need some event loop in your code.
libvirt provides a default one, built on top of the
blocking poll(2) system call. However, you can easily
integrate with Tornado I0Loop (LV1) or glib MainLoop
(LV2), if needed.

Default event loop is registered at the very
beginning, even before the connection to libvirt
daemon is opened:
libvirt.virEventRegisterDefaultimpl()
conn = libvirt.open(‘qemu://system’)

Next, you subscribe to the events you are interested
in. Let's say we want to receive events of any type:
cb_id = conn.domainEventRegisterAny(None, libvirt.VIR_
DOMAIN_EVENT_ID_LIFECYCLE, event_callback, None)

The first argument is the domain we want to
monitor; None means any. The second argument

eaBI0S (version 1.7.3-20130708_2318

aatxe)

achine UUID cel326f0-a9%a0-11e3-a5e2-0800200c9abb

PYTHON & libvirt TUTORIAL V

iPXE (http://ipxe.org) 00:03.0 C900 PCIZ.10 PnP PMM+O?7FC2C60+07

ooting from Hard Disk...

LILO boot: _

specifies the event “family” to subscribe to. Here, we
are interested in lifecycle events (started, stopped, etc),
but there are many others (removable device changed,
power management occurs, watchdog fired, and so
on). The last argument is an arbitrary value to be
passed to the event_callback() function (remember
stream.recvAll() and writer() we saw earlier?).

Event handler is defined as follows:
def event_callback(conn, domain, event, detail, opaque):

print ‘Event #%d (detail #%d) occurred in %s’ % (event, detail
domain.name())
event and detail are integer codes describing what
happened. For lifecycle events, they are defined in the
virDomainEventType and virDomainEvent*DetailType
enums; the constants (libvirt. VIR_LDOMAIN_EVENT_
STARTED etc) are named the same as enum fields.
while True:

libvirt.virEventRunDefaultimpl()

This is the main loop. In a real application, you will
probably run it in a separate thread. The call blocks
until a subscribed event (or a timeout) occurs, so even
exiting with Ctrl+C takes some time.

When the subscription is no longer needed, you can
terminate it with:
conn.domainEventDeregisterAny(ch_id)

Events notification opens many interesting
possibilities. For instance, you can start domains in
the particular order (one after another), or use the
Tornado framework to create a lightweight web-based
virt-manager alternative.

And there's more...

This concludes our quick tour of the features of libvirt.
We've barely scratched the surface, and there is much
more than we've seen so far: storage pools,
encryption, network filters, migrations, nodes, Open
vSwitch integration and the rest. However, the APIs
you've learned today form a solid foundation to build
more advanced libvirt skills for your next project. Let
the computer do the repetitive work for you, and have
fun with Python in the meantime!

Dr Valentine Sinitsyn has committer rights in KDE but spends

his time mastering virtualisation and doing clever things
with Python.

www.linuxvoice.com

You can take a screenshot
of the VM as early as you
want, even before a guest

kernel is booted.

97

