
FEATURE OPENCORES: DIY CPUS

www.linuxvoice.com34

For some years (the need for a few binary blobs
in the kernel excepted) many readers have run
an entirely Free Software stack on their servers,

laptops, desktops, and even tablets and phones. But
at the silicon level it’s another story, with open source
hardware limited to a few embedded boards like the
Arduino. The good news is that not only are there
open source designs for CPUs and Systems-on-Chip
(SoC) nowadays, but that it’s not too hard to learn to
design and make your own. Indeed, there are projects
designed to get you started doing just this.

One such of these is OpenCores, which bills itself as
“the #1 community within open source hardware
IP-cores”, backing the claim with a statistic of more
than 200,000 registered users. It hosts projects
ranging from relatively simple UARTs (universal
asynchronous receiver/transmitter) and Ethernet
MAC (Media Access Control) LAN implementations
right up to the complexity of full OpenRISC chips.

That reference to “IP-cores”, rather than CPU cores
is an abbreviation for so-called “intellectual property”,
and is a telling reflection of the proprietary nature of

Designing and implementing your own CPU or System-on-Chip
brings benefits to thousands of researchers and forward-looking

businesses, and is being adopted by a growing number of
hobbyists. Richard Smedley finds freedom

in configurable silicon.

OPENCORES: DIY CPUS FEATURE

www.linuxvoice.com 35

most work cast into silicon. The fast growth of
OpenCores shows that there’s enthusiasm and a
business need for a more open alternative. Naturally,
the opportunity that OpenRISC presents to gives
playing with the design of a full-blown modern
microprocessor makes OpenRISC useful in
universities, and the freedom to explore means
another field opened to hobbyists. But what’s really
driving development is a number of businesses taking
advantage of a flexible, cost-effective route to
specialist markets.

RISCing it
So, why pursue open CPU architecture, and why go
the RISC route? The latter question is the simplest to
answer. The case for RISC (Reduced Instruction Set
Computing) was well made by IBM researchers in the
late 1970s, and producers of the first RISC1 chip at
the Unversity of California, Berkeley 30 years ago.
Reducing the operation code instructions in silicon (by
a factor of 10 at the time), not only simplifies design
but frees up space for more registers and cache.
Efficient compiler design of the time took away the
need for most instruction operation code, and the
situation is unchanged today.

OpenRISC is a family of 32- and 64-bit processors
with optional floating point and vector processing
support. It’s a free, open source RISC architecture with
DSP (digital signal processor)features and a complete
set of free, open source software development tools,
libraries, operating systems and applications. The
reference design, the snappily titled OR1K (OpenRISC
1000) is implemented as OpenRISC 1200 (OR1200), a
synthesisable CPU core released under the GNU
Lesser General Public Licence (LGPL).

Writing your own design (for an OpenRISC chip)
consists of using a Hardware Description Language
(such as Verilog) to describe the chip at the most
basic level. Then comes synthesis – conversion to the

list of logic gates and connections used in your
chosen FPGA. This latest acronym is a Field
Programmable Gate Array, which is a kind of chip that
isn’t yet set in stone. One FPGA costs a lot more to
make than the equivalent processor, but the extra
flexibility means that if the design doesn’t work the
way you want it to, you can simply change it (that’s
the Field Programmable part).

Free as in almost
The netlist produced is a gate level description, which
then usually uses the chip manufacturer’s proprietary
software to produce the programmed FPGA. For
anyone wanting 100% Free and Open Source
hardware and design there doesn’t seem to be a way
around this at the moment. As Embecosm founder
and OpenCores stalwart Dr Jeremy Bennett told Linux
Voice: “The back-end tools are proprietary to the FPGA
manufacturers. Since these tools depend on intimate

Space RISC

Dr Jeremy Bennett of
Embecosm showing
the OpenRISC SoC
implementation on
FPGA at an Open Source
Hardware Users Group
meeting in 2011.

OpenCore has gone beyond earth-bound applications, after
students at San Jose State University – funded by NASA’s
Ames Research Center – designed a 1U satellite, TechEdSat,
to evaluate ÅAC Microtec’s implementation of OpenRISC, and
perform communications experiments.

The satellite, which was deployed from the International
Space Station in 2012, cost less than US$30,000 to build
thanks to the combination of OpenRISC and off-the-shelf
hardware selected to be rugged enough for space use.

According to engineers from ÅAC Microtec, the standard
OpenRISC design was modified with fault-tolerant features
and toolchain modifications invisible to the end-user software
as different from standard OpenRISC spec. The great thing
about using an open specification is that these modifications
have no barrier in terms of licensing or configuration
information, while the flexibility of FPGAs makes prototyping
quick and (relatively) easy.

At these prices it’s now conceivable that with savvy
sponsorship, even schools could launch a satellite with their
own custom CPU. However, don’t forget you can send a

Raspberry Pi to near-space from your school for 1% of this
cost, as David Akerman did when he launched his Pi and a
camera on a balloon into the skies over Berkshire.

OpenCores in space: the OpenRISC powered TechEdSat
is deployed from the International Space Station.

©
 2

01
1

An
dr

ew
 B

ac
k

FEATURE OPENCORES: DIY CPUS

www.linuxvoice.com36

knowledge of the device, it is hard to see how there
could be a free and open source implementation,
unless the manufacturer chose to do so.”

Given the growth of understanding in the
advantages of open source methodology, this is not
an impossible wish. Meanwhile, we accept that we
live in an imperfect world, and continue to make it
better – or at least more interesting – to the best of
our abilities. At least the Linux-compatibility of the
tools is good.

Fabulous Fabless
Designing and fabricating semiconductors is an
expensive business. You don’t get many opportunities
to create prototypes of designs that have tens of
millions of transistors in them, and this has led to
notable bugs such as the Pentium FDIV bug, which
caused the processor to return incorrect results in
floating point calculations (Intel eventually had to

recall the chip, but not
before considerable
damage to its
reputation). With even
giants like Intel having
rationalised its range of
offerings in the last
decade to concentrate
resources on the most
profitable lines, OpenRisc
is a disruptive

technology, enabling semiconductor companies to
develop chips for embedded markets like network
devices, personal entertainment hardware, and niche
industrial applications – without having to spend
money on operating their own factories.

Much of the active development on OpenRISC
comes from companies like Swedish design house
ORSoC, which also sponsors the OpenRISC project

directly. Many other small companies make chips and
boards based on OR1K, including ÅAC Microtec,
which has had its product put into orbit. The fast
development offered by open hardware also makes it
great for larger companies playing in fast-moving
markets: Samsung ships OpenRISC chips in the
system-on-chips used in its digital TVs.

Any curious hacker or maker can experiment with
FPGAs and OpenRISC. Delving into chip design
enables you to grapple with all sorts of tasty problems
involving Fused Multiple Accumulator (FMAC)
arithmetic, bus design, and optimal register numbers.
If you’ve ever programmed at a low level, and cursed
the decisions made by chip designers at Intel, now is
your chance to show the world a better way!

Anyone wanting to join in the fun will find many
resources online, but also meetings and chances to
learn the process of programming your own FPGA
through the Open Source Hardware Users Group
(OSHUG), which conducts meetings in and around
London but also ventured north for last year’s Open
Source Hardware Camp at the Wuthering Bytes
festival in Hebden Bridge.

Open to all
Working with OpenCore designs is challenging but
rewarding. “Inexperienced users should be warned
that the OpenRISC processor is quite a difficult
processor,” warns Patrick Pelgrims of the Belgian De
Nayer Instituut, in his tutorial on designing and
implementing an OpenRISC-based embedded
system. But we don’t want that to put you off – the
reference design is a good place to start, and as with
learning programming through playing with existing,
working code, so with hardware.

We asked Dr Bennett about the difficulties involved.
He pointed out that it’s “a relatively simple and well
documented architecture. It has a pipeline (more
difficult), but only a five-stage pipeline in the standard

Browsing the hardware

While the idea of building your own CPU
appeals to many of us, perhaps you are
looking for a way of testing the waters
without all the kit. Sebastian Macke of
simulationcorner.net has written jor1k – the
JavaScript OpenRisc 1000 emulator –
which gives you the chance to try out open
hardware design in that most familiar and
comfortable environment, your web browser.

jor1k works with Firefox and Chrome,
though if running locally with the latter you
need to run the browser with the command
--disable-web-security.

The emulated OpenRISC CPU is around
1000 lines of code – a neat introduction to
emulation, the OpenRISC architecture, and
JavaScript programming all in one! It’s also a
handy sandbox to test OpenRISC ports, and
you could try modifying the emulator to test
out ideas for modifying OpenRISC away from
the standard implementation.

The project’s GitHub pages –
https://github.com/s-macke/jor1k/ – include
a wiki with useful and interesting notes on
some of the JavaScript optimisations used
in the code, as well as speed differences
between browsers and a list of the many
demonstrations available in the Linux image
on the emulator.

If your emulated OpenRISC goes wrong
you can just scrap it and start again.

Inside the OpenRisc 1200 CPU – configuration at the
silicon level, with Free and Open Source Hardware.

“It is well within the grasp of
a competent hobbyist. And of
course modifying an existing
design is always easier than
designing one from scratch!”
Dr Jeremy Bennett.

OR1200 CP

Optional/Configurable Minimal Configurable

Instr.
MMU

Instr.
Cache

Wishbone
I/F

Timer

Power
Mgmt.

Debug I/F

Interrupts

Wishbone
I/F

Data
Cache

D

S

P

Data
MMU

Fetch

Decode

Execute

Memory

Writeback

OPENCORES: DIY CPUS FEATURE

www.linuxvoice.com 37

implementation (so not that difficult).” He summed it
up as: “more complicated than some, but a lot less
complicated than many. The bottom line is that
processor design is not trivial. On the other hand it is
well within the grasp of a competent hobbyist. And of
course modifying an existing design is always easier
than designing one from scratch!”

Chip Hack & getting involved
OSHUG runs an annual event called Chip Hack, which
is a weekend of learning to create embedded
hardware, building and making, and taking home your
own OpenRISC SoC:

If you can’t get to Chip Hack you can still give it a try
yourself: you could use a browser-based emulator to
explore OpenRISC (see boxout, above-left), but getting
the toolchain installed on your PC to get started can
be as simple as:
$ git clone git://openrisc.net/jonas/toolchain
$ cd toolchain
$ git submodule update --init
$ make -j3 PREFIX=~/openrisc/toolchain
$ export PATH=PREFIX=~/openrisc/toolchain/bin;$PATH
For an optimum make -j value, double your number of
CPU cores, and add one. The destination directory can
be anywhere you have permission to put it. After
setting up your cross-compile environment and
building a Linux kernel (see http://openrisc.net/

toolchain-build.html) you can test-run your OpenRISC
environment in a VM with:
or1ksim -f arch/openrisc/or1ksim.cfg vmlinux

Next, you’ll need an FPGA development board. This
year’s Chip Hack event will use the DE0-Nano board,
but there are plenty of others listed on the OpenCores.
org website, including some recent developments. As
noted earlier, you will need proprietary Quartus
software from Altera installed to turn the Verilog HDL
file into something that can be loaded onto the FPGA.
Before that you’ll need the Verilog file itself – the
OpenRISC site has an OpenRISC Reference Platform
System-on-Chip in the flavour you need.

Environmentally friendly
Low power consumption has always been an
important selling point for RISC chips, enabling them
to quietly conquer the embedded space in the 1990s,
and thus be the big winners in the rise of the mobile
device. Given the huge power consumption of data
centres on a worldwide scale, it’s no surprise to find
OpenCore developers at UK-based Embecosm, which
did much of the work on GCC and the GNU toolchain
for ORSoC. Adapteva (developers of “a revolutionary
many-core embedded computing platform for
applications requiring ultra
high floating-point
performance with minimal
power consumption”), is
also doing work funded by
the UK Technology Strategy
Board (a UK government
innovation agency), to
optimise GCC for compiling binaries with a lower
power draw.

As we go to press, the Chip Hack Cambridge event,
providing an introduction to FPGA programming, is
already sold out “but a key part of the idea is that he
resources are open, so others can run the course
themselves,” Dr Bennett tells us. Get on the Chip Hack
mailing list, and you should get early news of other
events and training opportunities.

You’ll need an FPGA development board to get started
which, while not cost-free, is orders of magnitude less
expensive than building a CPU plant!

“Low power consumption has
always been an important
selling point for RISC chips.”

DIY chips on the web
Introduction to FPGA programming event.
http://chiphack.org
Good beginners’ introduction.
www.rte.se/blog/blogg-modesty-corex/openrisc-1200-
soft-processor
Julius Baxter’s Masters Thesis on the OpenRISC Project.
http://juliusbaxter.net
Paper covering all the chips from OpenSPARC to the
European Space Agency’s LEON project:
http://ur1.ca/gyitc
jor1k – OpenRisc 1000 in your browser.
http://s-macke.github.com/jor1k
Open Source Hardware User Group
http://oshug.org
Also, there’s a supportive community on the #opencores

channel on freenode IRC.

You could build an entire
OpenRISC toolchain
yourself, but as the hard
work’s already been done,
just grab it with Git and get
on with the fun.

