
TUTORIAL PiBEACON

www.linuxvoice.com

YOU WILL NEED:
• Raspberry Pi (Model A

or B can be used).
• Battery with integrated

solar cell (or you could
use the Pi powered from
the mains).

• PiGlow (Available from
Pimoroni.com).

• Buzzer/piezo speaker.
• Soldering iron (optional

– I’ve breadboarded the
example diagram for
this tutorial).

• Jumper wire (female
to male, from Pi to
breadboard and male
to male for breadboard
connections.

• 100 ohm resistor
• Momentary switch

(push button).
• Breadboard.
• Insulation tape.
• Micro USB to USB lead

(to power the Pi).
• 20cm of wire (shielded,

but you could use a
female to male jumper
wire).

• An FM radio tuned in to
103.3MHz.

The background to this project is that I’ve been
working with a class at Mereside Primary
School in Blackpool. The children were

learning about natural disasters such as tsunamis
and earthquakes. During the course of their lessons
they learnt that one of the first issues faced by the
victims was a loss of communication as mobile
phone towers were quickly damaged. The children
worked as a team to understand the impact that this
would have and how they could make a difference.

Their idea was to create a beacon that attracts help
in three ways.

An FM radio transmitter, that can be tuned to work
on many different frequencies.
An LED unit, to visually attract people to the beacon.
A buzzer, to attract people using audio output.
The beacon must be completely self supporting

and have its own self-charging power source. To
accomplish this we found a cheap USB battery pack
with a built-in solar cell on Amazon, but for the
purposes of this tutorial you can just plug into the
mains.

To keep the project as simple as possible we'll use
only one method of input, which is a single push
button that when pressed will launch the Python code.
Finally, the project must be weatherproof, and at this

prototype stage the best solution was every
Raspberry Pi hacker's best friend, a plastic lunchbox.

The PiBeacon was entered into PA Consulting's Pi
Awards event on 2 April 2 2014. I am proud to say that
my team came second in their year group and really
proved how far they had come in such a short time. I’d
like to say a very big “well done” to the hackers from
Mereside Primary School.

Pin reference
Throughout this tutorial, I will refer to the GPIO pins of
the Raspberry Pi via their board reference. With pin 1
being the top-left pin, nearest the SD card slot, and pin
2 being directly to pin 1’s right. Please refer to the
guide, right, for the location of 3.3V, 5V and ground
pins. Don't use use these pins unless instructed to do
so, but you can use any other pin in your program.

The only user with permission to use the GPIO pins
in Raspbian is root, so in order for you to use the GPIO
in Idle, open a terminal and type
sudo idle

Type in your password (by default in Raspbian this
is raspberry) and press Enter. In a few seconds the
editor for our Python code will be on the screen. By
launching Idle in this manner you will be able to
access the GPIO pins – just remember to open any
Python programs using the File > Open menu option.

Building the project
This build is not complex but it does have four areas
that need to be carefully wired together. If you are
unsure about your wiring, please ask someone to
check before you connect any power to your Pi or
attached components.

Antenna This is the most simple section of the
build. All you will need to do is attach a maximum of
20cm of wire to pin 4 of your Raspberry Pi. The
greater the length of wire, the larger your antenna,
but also the greater your signal may become.
Please refer to the section on radio transmissions
for safety instructions.
Button I used a momentary switch, attached to pin
8 to act as the only method of input. The switch is
attached to 3V power from pin 1 and a resistor is
used inline with Ground to ensure that the switch
does not accidentally trigger from a slight press.
Buzzer A simple buzzer is attached to pin 26 and
Ground (pin 20). This buzzer is used as an audio
output that will send a message in Morse Code.

The finished PiBeacon
project encased inside its
protective lunchbox shell.

RASPBERRY PI: BUILD
AN EMERGENCY BEACON
Combine simple Python modules with hardware
programming to build your own emergency distress beacon.

 TUTORIAL

LES POUNDER

90

WHY DO THIS?
• Keep relatively safe from

natural disasters.
• Program components

connected to the
Raspberry Pi's
GPIO pins.

• Learn code concepts
including loops, data
storage and conditional
statements.

PiBEACON TUTORIAL

www.linuxvoice.com

PiGlow Rather than use just one LED, we used 18
super-bright LEDs courtesy of Pimoroni’s tiny board.
Normally this board covers all the GPIO pins, but

thanks to a phone call with Jon and the team we
worked out the minimum number of pins necessary,
and these are as follows:

Pin 1 3V3 Logic level voltage.
Pin 2 5V LED source current.
Pin 3 SDA i2c Communications.
Pin 5 SCL i2c Communication.
Pin 14 Ground (GND).
Pin 17 Logic level voltage.
Remember when inserting the wires into the PiGlow

that you will need to work out where each pin should
be inserted. When the board is attached to the GPIO,
the “P” of PiGlow should be near the SD card slot.
Once you have located Pin 1 of PiGlow, insert a red
jumper wire to help you remember that Pin 1 is 3.3V
power, and refer to the diagram for more information.

Set up PiGlow, i2c and PiFM
PiGlow uses something called i2c to control the 18
onboard LEDs, and by using i2c PiGlow is able to use
far fewer wires than a conventional series of 18 LED
would require. I2c was developed by Philips in the
1980s as a means to send data to multiple devices
using the a minimal number of wires. It's useful, but
the Raspberry Pi does not have i2c set up by default.

To set up i2c on your Raspberry Pi, download a
copy of Michael Rimmican’s excellent setup script
from GitHub: https://github.com/heeed/pi2c.

Open a terminal, navigate to where you downloaded
the file and then used chmod to make it executable:
chmod +x pi2c.sh
Then run the script using sudo or as root:
sudo .pi2c.sh

After a few minutes your Pi will be reconfigured to
use i2c; at this time it would be prudent to reboot your
Pi to ensure that the configuration is complete.

Now you will need to download the Python library
for PiGlow, and luckily Jason Barnett has created a
great library for us to use, which is available here:
https://github.com/Boeeerb/PiGlow.

For this project, piglow.py will need to be in the
same directory as our beacon.py code. With these
files downloaded, try out some of the examples to
ensure that your PiGlow board is working correctly.

Our final requirement is PiFM, a library of code
that we can easily drop in to our project to add an
FM transmitter. You can download the library from
www.icrobotics.co.uk/wiki/index.php/Turning_the_
Raspberry_Pi_Into_an_FM_Transmitter. Extract the
files to the same directory as your beacon.py and
piglow.py files. I kept the example audio file – the Star
Wars theme – as the audio to play over the airwaves.
You could also use any 16-bit mono WAV file.

Coding the project
You can download the code for this project from my
GitHub repository: https://github.com/lesp/PiBeacon.

We coded this project in Python 2.7 due to its
mature collection of libraries and documentation.
Libraries enable us to reuse code that other people
have written. I used four libraries in my code: PiFM to
control the radio transmitter; RPI.GPIO for GPIO
access; time to add a delay function to my code; and
PiGlow to control the PiGlow LED board.

Import the libraries into our code like so:
import PiFm
import RPi.GPIO as GPIO
from piglow import PiGlow
from time import *

91

PRO TIP
Project files for the
PiBeacon are available at
https://github.com/lesp/
PiBeacon .

Diagram of the completed
setup. Remember to pay
careful attention to the
GPIO pins for PiGlow.

Pin diagram for Model B
Raspberry Pi.

TUTORIAL PiBEACON

www.linuxvoice.com92

Next I created two variables: button_pin and buzzer,
and in each one I stored the value of the GPIO pin
used for each, respectively 8 and 26. Variables are
great, as they enable our program to retain
information and act as a data storage system.
Variables are used to replace hard coded values in our
code. For example I could’ve used the integers 8 and
26 throughout my code, but if I wanted to change
those numbers to something else, then I would have
to go through every line of code to make the change.
Because we're using a variable, we can simply
change the value of that variable once and that

change is reflected
whenever we refer to
the variable name.

In order to use the
GPIO we need to tell
Python how we want to
use it:

GPIO.setmode(GPIO.BOARD)
This tells the Pi that I wish to use the numbering as

per the earlier diagram.
GPIO.setup(button_pin , GPIO.IN)
GPIO.setup(buzzer , GPIO.OUT)

These two lines tell the Pi that our button, attached
to pin 8, is an input and that our buzzer on pin 26 is an
output. Remember that the variables button_pin and
buzzer both contain the pin reference for each.

To make it easier for me to use the PiGlow function,
PiGlow(), I next create a variable called piglow:
piglow = PiGlow()
Later on I use the code
piglow.all(128)
to set all of the LEDs to half brightness, but I’ll cover
that in more detail later.

Now we come to the main part of the program. In
order to control the program we use an infinite loop,
which in Python is 'while True:'. This is the simplest
kind of loop, and for the purpose of this project, is the
most practical. Any code contained in this loop will
run over and over until it is stopped.

The next line is a conditional statement that checks
to see if the button has been pressed. This, coupled
with our infinite loop, enables the program to
constantly check for user input via the button:
while True:
 if GPIO.input(button_pin)==1:

So now that we have a conditional statement, what
do we want it to do if the condition is true? Well firstly I
want it to print “Button Pressed”, for debugging
purposes, so that I can see that the code has worked.
Then I want the code to start PiFm and play the Star
Wars theme. The code is as so:

print(“BUTTON PRESSED”)
PiFm.play_sound(“/home/pi/sound.wav”)

Once PiFm has finished playing the audio I want to
then start a loop that iterates three times. Inside this
loop I want the buzzer and PiGlow to provide output in
the form of Morse code – more specifically the
internationally recognised SOS message (… - - - …).

To create the iterated loop I used a 'for' loop with a
range that starts at zero and ends before three, so it
goes 0,1,2. A 'for' loop is a loop that will iterate through
a list, range or tuple until complete, giving us a the
limited number of loops that we require. This gives us
the three iterations that we require. Here's the code:
for i in range(0,3):

You might be wondering where the i came from?
Well, this is a variable that we've declared “on the fly”.
You could replace i with x, y or z if you wished. The
range(0,3) bit instructs the for loop to start at 0 and
count to 2, as 3 is the limit of our range. By counting
from 0 to 2 we have 3 loops.

Send signals
Now to make the buzzer and PiGlow come to life. We
have to tell the GPIO to send electricity to the buzzer,
and to do that we use the Boolean term “True” to say
that we want to turn the power on. Remember I earlier
set up the GPIO pin 26 as an output and used a
variable called buzzer to represent this. So now to
send the power to the pin I use the following code.
GPIO.output(buzzer, True)

To turn the buzzer off I change the True to False.
For PiGlow it is a little bit different but by no means

a challenge. To illuminate all of the LED on the board I
use piglow.all. Now as you will see in the code there is
a number contained in brackets. This number is the
brightness of the LED, with 0 being off and 255 being
full brightness. I used 128, which is the halfway point
between the two. A word of warning: PiGlow is
extremely bright, so be careful with your eyes. Here's
how to turn the LED on.
piglow.all(128)

“Variables enable our program
to retain information and act as
a data storage system.”

 Radio transmissions
This project uses a Python library called PiFM,
which is available from www.icrobotics.co.uk/wiki/
index.php/Turning_the_Raspberry_Pi_Into_an_
FM_Transmitter. This library is what powers the
PiBeacon’s radio transmissions. It's very versatile,
with extra functionality such as broadcasting in
stereo and using a microphone connected to your
Pi to broadcast live audio over the airwaves.

Transmitting radio signals is not to be taken
lightly, and great care should be taken when using
this project. Make sure that you are not operating

on any frequencies that are reserved for emergency
services or aviation, otherwise you will get in
trouble with the authorities. Please refer to the
official guidance available from http://stakeholders.
ofcom.org.uk/enforcement/spectrum-enforcement/
law, as there are certain regulations that must be
followed when using radio transmitters.

The FM transmitter is also very powerful – so
powerful in fact that if used incorrectly it can cause
interference. Best practice would be to reduce the
length of wire used in the build so that the effect is

localised. The use of SOS audio messages or SOS
Morse code is also not to be broadcast on the radio
spectrum, so please just play the theme from Star
Wars or Transformers and save the emergency for
the real thing.

If you are still unsure then the best resource to
use is your local amateur radio group (basically a
LUG for those interested in radio related topics). A
quick Google search will find your local group, who
will be able to answer any questions that you may
have. Remember: hack responsibly.

PiBEACON TUTORIAL

www.linuxvoice.com 93

And to turn off the LED we create a new line, which is
identical to before but with the (128) changed to (0).

To control which letter is being communicated in
Morse I used a delay function, which in Python is
called sleep(). To create a dot, which is a short beep in
Morse I kept the delay to a minimum and set it to 0.5,
which is half a second. To create a dash, which is a
longer sound, I used a delay of 1, which is 1 second. In
code the delays look like this.
sleep(0.5) # For a DOT
sleep(1) # For a DASH

The last section of code is the else statement.
When using a conditional such as if, we can use an
else statement to capture any unexpected conditions.
In this case the else statement is used when no user
input is detected, it will print “Waiting for input” over
and over. As soon as user input is detected, the else
condition is no longer true and the if condition, when
the button is pressed, is now true.

Before you test your project it would be prudent to
check all of the connections and wiring before you
start the program. Once you're happy that everything
is as it should be, run your code. You can do this in Idle
via the Run > Run Module menu item.

Grab your radio and tune in to 103.3MHz FM, which
is the default frequency that we will be using for this
project. You should now see the shell printing “Waiting
for input” so go ahead and press the button. A
moment later you should hear the theme from Star
Wars playing through your FM radio. A few minutes
later, once the music has finished, your buzzer and
PiGlow will start emitting a message in Morse code.
Congratulations: you have built a working PiBeacon!

Bonus points – change your message
In this project we use sleep() to control the delay for
our beeps and flashes, with half a second for a dot
and one second for a dash. So using just dots and
dashes we can communicate text and numbers.

Instead of broadcasting SOS, let's say “Linux Voice”.
First of all we'll refer to a chart of Morse Code.
L DOT DASH DOT DOT
I DOT DOT
N DASH DOT
U DOT DOT DASH
X DASH DOT DOT DASH
V DOT DOT DOT DASH
O DASH DASH DASH
I DOT DOT
C DASH DOT DASH DOT
E DOT
Why don’t you try altering the example code to output
this message instead?

Here’s how to write L in Morse using Python
#The letter L in Morse code.
#DOT
GPIO.output(buzzer, True)
piglow.all(128)
sleep(0.5)
GPIO.output(buzzer, False)

piglow.all(0)
#End of DOT, now a 1 second pause
sleep(1)
#DASH
GPIO.output(buzzer, True)
piglow.all(128)
sleep(1)
GPIO.output(buzzer, False)
piglow.all(0)
sleep(1)
#End of DASH, now a 1 second pause
#DOT
GPIO.output(buzzer, True)
piglow.all(128)
sleep(0.5)
GPIO.output(buzzer, False)
piglow.all(0)
#End of DOT, now a 1 second pause
sleep(1)
#DOT
GPIO.output(buzzer, True)
piglow.all(128)
sleep(0.5)
GPIO.output(buzzer, False)
piglow.all(0)
#End of DOT, now a 1 second pause
sleep(1)

So what have we accomplished here?
We have built the hardware that powers our project.
Using Python and libraries from external sources
we have created the code that controls the
components in the beacon.

We also used programming concepts such as Loops,
to control the flow of our program and to repeat
repetitive tasks; variables, to store the values of GPIO
pins in one section of code, enabling us to quickly
make changes to one value that are reflected
throughout the program; and conditionals to control
the flow of our program by using logic. The next step
is to play with the lights on the PiGlow – you could
even create an animation.

Assembling the final
prototype and soldering
the connections was
essential to qualify for the
PA Consulting competition.

Les Pounder is a maker and hacker specialising in the
Raspberry Pi and Arduino. Les travels the UK training
teachers in the new computing curriculum and Raspberry Pi.

