
SYSADMIN

www.linuxvoice.com66

In our third and final look at new
technologies making their way to Linux,
we’re going to explore Btrfs (which in

my head I’m pronouncing butter-eff-ess).
Btrfs is a new copy-on-write filesystem for
Linux, which aims to deliver advanced
features such as volume management,
snapshots, checksums and send/receive
of subvolumes.

If you’re not already a filesystem expert,
many of those terms might sound alien to
you, but continue reading and we’ll do our
best to explain what these features do, why
you want them, and when you’ll get them.

Stability
Let’s start with that final question, as any
one who’s paid even a little attention to news
about Btrfs has heard horror stories about it
destroying data and may well think it’s a long
way from production.

As it stands now, OpenSUSE plans to be
the first major distribution to use it by
default in its November 13.2 release,
indicating that they believe it’s stable enough
for daily use. Facebook, too, which has
recently hired many Btrfs developers, has
announced plans to begin using Btrfs in its
production web tier, where it can test

performance and stability on real, albeit
easily recoverable, workloads.

This anecdotal support from distributions
and large production environments, along
with the official wiki claiming that the on-disk
format is now stable, suggests that if you
want to start testing, now is the time to do
so. It might not be making its way in to the
next round of enterprise distribution releases
as default, but it will be there for those users
who really need it.

So, if you want to try some of the features
we’ll describe in the rest of this article, make
sure you have automatic and tested
backups running. Do that, and even if the
‘experimental’ status of Btrfs does lead to
data loss, you won’t be left cursing.

Getting started
With that word on stability out of the way,
let’s get to work and create a new Btrfs
filesystem. Once we have the filesystem in
place, we’ll start working through some of its
core features, showing what they do, why
they’re great and how to use them.

For our simple experiments, we’re going to
use some plain files mounted as loop
devices. So, to start, first create an empty
3GB file, use losetup to create a new loop

Among developers, ‘test driven
development’ has become trendy once
more. It’s certainly not a new idea, as
similar practices are described in The
Mythical Man Month, which was originally
published in 1975, but it is as popular now
as it has ever been.

The idea is simple. Developers write
automated tests to check that functions
and features they’ve implemented work.
Usually, these tests take the form of
simple functions that call the code to be
tested, and compare the output to an
expected value, using an assert statement
or similar. If the expected and actual value
match, the test passes; if they’re different,
the test fails.

In TDD, this is taken one step further,
and advocates argue that the developer
should first write a failing test for the
function they’re about to implement, and
then they can keep working until it passes.

What’s this got to do with system
administration? Well, I would argue that
operations teams should take a similar
approach when building out the
infrastructure for a new product.

Tests can take the form of checks in
monitoring software such as Check_MK or
Nagios. Ensure that, after your provisioning
servers, your monitoring server is the first
thing you install. Then, for each subsequent
server to be installed, first add it and all
necessary checks (process checks for
Apache, MySQL server status checks etc)
to your monitoring software.

Then you can begin building it. At first,
all the checks will be red. But as you boot
it, and then run your configuration
management recipes, you’ll see check
after check turn green. If any stay red by
the time Puppet etc has finished, you
know you need to tweak your recipes.

Btrfs
The filesystem that’s better (or butter) in so many ways.

Creating a btrfs filesystem is just like any other – easy. In this tutorial, we’ve used loopback
mounts to experiment, but this would all work just as well on a real disk .

System administration technologies brought to you from the coalface of Linux.
SYSADMIN

Jonathan Roberts
dropped out of an MA
in Theology to work
with Linux. A Fedora
advocate and systems
administrator, we hear
his calming tones
whenever we’re stuck
with something hard.

SYSADMIN

www.linuxvoice.com 67

Some of the tools you’ve used in the past, such as df, won’t take into account metadata and other
features of Btrfs, so it has its own tools, such as btrfs filesystem df /path (the substitute for df).

device, and then create a new Btrfs
filesystem:
dd if=/dev/zero of=/home/jon/btrfs1 bs=1024
count=3072000
losetup /dev/loop0 /home/jon/btrfs1
mkfs.btrfs /dev/loop0

That’s all there is to it. You can then mount
/dev/loop0 as you would any other
filesystem, examine it with tools like df etc.

As with any filesystem, there are a host of
options you can specify at mount time to
change the way that it works. With Btrfs, one
useful option is compress, which enables
you to turn on compression using either zlib
or lzo:
mount -o compress=lzo /dev/loop0 /mnt/btrfs
While compression brings the obvious
advantage of letting you store more data on
disk, in some circumstances it can also
bring a performance benefit too. On most
systems without solid state storage, there
are often CPU cycles to spare, while disk I/O
can be a real bottleneck. By asking the disks
to pull back less data, but asking the CPU to
do some more work uncompressing that
data, you can improve your performance.

Subvolumes
Now that you have a Btrfs filesystem
available, let’s look at the second (after
transparent compression) feature of
interest: subvolumes. A Btrfs filesystem can
be divided into multiple roots that can each
be treated as a filesystem in its own right
(unlike logical volumes, these independent
roots are not separate block devices):
btrfs subvolume create /mnt/btrfs/images

If you inspect the mounted filesystem at
this point, you’ll see what appears to be a
new directory. You can cd in to it, you can
create files within it etc. What happens,
however, if you try to create a hard link
between a file in this subvolume and the
parent btrfs file volume?
ln /mnt/btrfs/images/screen1.png /mnt/btrfs/
screen1.png

That operation fails, just as if you’d tried to
create a hard link between two different
mount points.

OK, so what can you do with subvolumes?
Well, when creating a subvolume, you can
make it a snapshot of another Btrfs volume:
btrfs subvolume snapshot /mnt/btrfs/images /mnt/
btrfs/ss-images

Because Btrfs is a copy-on-write
filesystem, this snapshot could be an exact
replica of a 300GB filesystem and it would
still have been created instantly. Btrfs only
needs to copy data when information in the
snapshot or the original volume actually

changes, making them fast to create and
remove as well as extremely space efficient.

What really makes subvolumes useful,
however, is that you can mount individual
subvolumes without mounting their parent.
First, list all of the subvolumes in your Btrfs
volumes to find out their ‘subvolume IDs’:
btrfs subvolume list /mnt/btrfs

Then, assuming the ss-images snapshot
created above has volume id 258, umount
the Btrfs filesystem before remounting with
the following options:
mount -o subvolumeid=258 /dev/loop0 /mnt/btrfs
When you list the contents of /mnt/btrfs,
you’ll only see the contents of that
subvolume. This feature is particularly
important because it means, for example,
you can snapshot your root volume before

an upgrade, and if things go awry, remount
the snapshot as your root and get back to a
working state straight away.

Multiple volumes
As well as having these LVM-like features,
Btrfs also shares features with traditional
RAID, too. A Btrfs filesystem can be spread
across multiple devices, and you can
configure it to distribute the data across the
devices according to one of several
common RAID levels:

RAID 0 Striping, in which data is striped
across disks, leading to improved read
and write speeds. Btrfs also supports an
extension of RAID 0 in which disks do not
have to be the same size, known as
‘single’.
RAID 1 Mirroring, in which data is
mirrored across two or more disks of the
same size. Can be faster for reads, but
will slow down writes, as data has to be
written twice.
RAID 10 Mirrored striped, in which data is

striped across a pair of drives, which is in
turn mirrored to another pair of drives.
Aims to give the benefits of RAID 0 and 1.
RAID 5 and 6 Stripe data, as in RAID 0, but
sacrifice some space for ‘parity’
information. This parity information allows
the array to lose one disk in RAID 5 or two
disks in RAID 6.
To set up a multi-device Btrfs filesystem

like this, first create a second loop device:
dd if=/dev/zero of=/home/jon/btrfs2 bs=1024
count=3072000
losetup /dev/loop1 /home/jon/btrfs2

Then use the mkfs.btrfs command again,
but with the following options:
mkfs.btrfs -d raid0 /dev/loop0 /dev/loop1

You can check the man page for mkfs.
btrfs to see other options for the -d switch.

Self healing
We’re close to the end of this month’s
overview, and there’s so much we haven’t
touched on – file cloning, filesystem
mirroring with send/receive, online
rebalancing (aka changing RAID levels) and
much more. Before finishing this month’s
section, there’s one other aspect of Btrfs
that I’d like to draw to your attention: Btrfs
aims to be self healing.

Btrfs records checksums for each block
that it writes. When it reads the data, it
compares the data to its checksum, and if
there’s a difference, it automatically tries to
re-read the data from one of your redundant
copies or parity information – eg if you’re
using RAID1/10, 5 or 6 and Btrfs reads a bad
block, you’d never know it happened unless
you were to take a look in the logs.

That’s all we have space for, but I hope
you’ll start thinking about all you could do
with Btrfs when it does eventually hit your
favourite distribution.

“A Btrfs filesystem can be divided into roots that
can each be treated as a filesystem in its own right.”

