
CORETECHNOLOGY

www.linuxvoice.com64

The term “sockets” refers to an API (a
set of library routines) that enables
us to write clients and servers that

communicate with the TCP and UDP
protocols. A socket is sometimes described
as a communication endpoint; it’s where the
transport provider (the TCP or UDP layer)
and the application programs meet.

Let’s talk first about the underlying IP
layer. IP (Internet Protocol) has the
important job of delivering a datagram to the
correct recipient machine (based on its IP
address). The IP layer handles all the routing
decisions. However, IP does not offer
guaranteed delivery. If a packet goes
missing, it just goes missing; there’s no
mechanism to automatically re-send it. Also,
there’s no guarantee that the packets will
arrive in the same order they were sent.

Successive datagrams sent over a wide-
area network may get routed differently and
arrive in the wrong order.

The TCP and UDP protocols lie on top of
IP and are of more direct interest to us if
we’re writing socket-based programs.

UDP
UDP stands for User Datagram Protocol and
is the simpler of the two. In fact it adds very
little on top of IP except for the concept of a
port number (a 16-bit value) that enables
datagrams to be sent to a specific endpoint
(effectively, to a specific application or
service) on the destination machine.

UDP sockets provide a “connectionless”
communication model, and sometimes
they’re compared to the postal service.
Suppose I’m in regular postal contact with

Sockets, UDP and TCP
This month, we’ll get plugged in with sockets, which span the world.

Clients use arbitrary “ephemeral” ports, server bind “well-known” ports. The tuple {client port, client IP,
server port, server IP} identifies a TCP connection

CORE
TECHNOLOGYA veteran Unix and Linux

enthusiast, Chris Brown has
written and delivered open
source training from New Delhi
to San Francisco, though not on
the same day.

Barney Rubble at Bedrock. Each and every
letter I send to him has to have Barney’s
address on the envelope; based on that
information alone the letter is routed
through the postal system and delivered. I
don’t get notification of delivery; I don’t even
get notification of non-delivery.

Every datagram sent by a program has to
have a destination address (an IP address
and port number) specified. When a
program transmits a UDP datagram there is
no guarantee that it will arrive and no
notification if it doesn’t. UDP simply inherits
the Internet Protocol’s failure of not
guaranteeing to deliver the datagrams or get
them in the right order. Of course, if the
communication is taking place within a local
network it’s difficult to see how datagrams
might become mis-ordered; nonetheless,
UDP makes no guarantees about delivery
order. It is sometimes known (unfairly) as
the “Unreliable Datagram Protocol”.

Information exchange
For many UDP-based services the lack of a
“first sent, first received” guarantee isn’t an
issue. Take DNS for example: it listens on
UDP port 53, receives a lookup request, and
sends a reply. Next request, next reply. There
is never a sequence of datagrams that form
part of the same interaction.

Other UDP-based services handle things
differently. For example, the Trivial File
Transfer Protocol (TFTP) (which does use a
sequence of datagrams that form part of
the same interaction), solves the problem by
having every datagram explicitly
acknowledged within the application layer,
so that the whole thing stays in lock-step.

Now let’s look at TCP (Transmission
Control Protocol). Like UDP, it’s also layered

Dive under the skin of your Linux system to find out what really makes it tick.

Client Server

Client
application

Upper case
server

Arbitrarily assigned
ephemeral port

SSH
server

Web
server

Well-known
port

IP address
192.168.1.17

IP address
192.168.1.54Network

37161 1067 22 80

CORETECHNOLOGY

www.linuxvoice.com 65

over IP, and like UDP it adds the notion of
port numbers to identify a specific endpoint.
But TCP is considerably more complicated,
offering a reliable, sequenced, connection-
oriented service.

Sometimes people refer to TCP as a
“guaranteed” delivery service, but we should
be clear what is meant by that. If you unplug
the network cable from your server, TCP
won’t guarantee to deliver packets to it, nor
can you write in and ask for your money
back when it fails. The reliability of a TCP
connection results from a process of
“positive acknowledgement with re-
transmission” – essentially, senders expect
a confirmation of receipt of the segments of
data they transmit, and will re-send them if
they don’t get one.

The main thing we need to understand is
the connection-oriented nature of the
service, and a common analogy is with a
telephone call. Edward Bear wants to call
Maisie Bear to invite her to a picnic. He
provides addressing information “up front”
when he dials Maisie’s phone number
(analogous to specifying an IP address and
a port number when establishing a TCP
connection) and Maisie needs to answer the
phone (accept the connection) but from
then on they have the illusion of a piece of
copper wire connecting their phones. In my
analogy, the client and server have a file
descriptor referencing the connection.
Edward and Maisie simply speak into the
phone. Maisie doesn’t need to repeatedly tell
the telephone company “please deliver this
sentence to Edward Bear”, there is a
connection and they simply speak on the
phone. In my analogy, the client and server
simply read and write on their file descriptor.

Design choices
The choice of UDP or TCP protocols has a
fundamental effect on the way in which
services are written, particularly if they want
to be able to service multiple clients

simultaneously. A UDP-based service such
as TFTP is basically holding out a bucket
labelled “Port 69”. Any client can lob a
datagram into the bucket, and in general the
server will find itself fishing datagrams out
of the bucket from various clients in some
arbitrarily interleaved order. Usually, a
UDP-based server is single-threaded, with
the thread looping round on the request to
“get the next datagram from the bucket”.
TCP-based services are different; each
accepted connection results in a new file
descriptor. In the simplest case, a server
might complete its dialog with one client
before accepting a connection from the
next, but this will keep subsequent clients
waiting if a client has opened the connection
and then gone for a cup of tea. More

commonly, TCP servers use a process-per-
client or thread-per-client model to achieve
concurrency when serving multiple clients.

I’m going to inflict some C code on you to
show how sockets really work. Our example
is a simple TCP-based server; the “service” is
simply to convert any text received by the
client to upper case, and send it back.

Here’s the code. (The lines numbers are
just for reference; they aren’t part of the file)
 1 #include <stdio.h>
 2 #include <netinet/in.h>
 3
 4 #define SERVER_PORT 1067
 5 #define BUFSIZE 100
 6
 7 /* ------ service() ------- */
 8

Try It Out – Build and test the upper-case server

Client and server ends in a TCP connection

You can easily build this server. Either type the code
in, or grab it from our magazine landing page on
www.linuxvoice.com.

Put it into a file called ucserver.c. Next, ensure
you’ve got the gcc compiler installed. On Ubuntu,
for example it’s installed simply as:
$ sudo apt-get install gcc

Now build your executable:
$ gcc ucserver.c -o ucserver

Assuming it compiles without errors, run it in the
foreground:
./ucserver

Now open a new terminal window and verify that
the server is listening on the expected port:
$ lsof -i TCP:1067
COMMAND PID USER FD TYPE DEVICE SIZE/OFF
NODE NAME
ucserver 12575 chris 3u IPv4 272606 0t0 TCP
*:1067 (LISTEN)

We can use netcat (also know as nc) as a handy
client program to test our server by telling it to
connect to port 1067. All nc is doing is connecting
to the port and ferrying lines of text back and forth,
like this:

$ nc localhost 1067
Hello World
HELLO WORLD
This is a test
THIS IS A TEST
^D

Success! Not the world’s most exciting service
I grant you. But what do you expect for 40 lines of
code? You can also run the test “non-interactively”
by piping into nc like this:
$ echo “Hello World” | nc localhost 1067
HELLO WORLD

Server operations

Client operations

Create
socket

Create
socket

Bind a port number
to the socket

Tell TCP to listen
for connections

Accept
connection

Read

ReadWrite

Close connection

Connect to server

Close connection

Write

CORETECHNOLOGY

www.linuxvoice.com66

 9 void service(int in, int out)
10 {
11 char buffer[BUFSIZE];
12 int i, len;
13 while ((len = read(in, buffer, BUFSIZE)) > 0)
14 {
15 for (i = 0 ; i < len; i++)
16 buffer[i] = toupper(buffer[i]);
17 write(out, buffer, len);
18 }
19 }
20
21 /* ---- Main program ---- */
22
23 void main()
24 {
25 int sock, fd, client_len;
26 struct sockaddr_in server, client;
27
28 sock = socket(AF_INET, SOCK_STREAM, 0);
29 server.sin_family = AF_INET;
30 server.sin_addr.s_addr = htonl(INADDR_ANY);
31 server.sin_port = htons(SERVER_PORT);
32 bind(sock, (struct sockaddr *)&server,
sizeof(server));
33
34 listen(sock, 5);
35 while (1) {
36 client_len = sizeof(client);
37 fd = accept(sock, (struct sockaddr *)&client,
&client_len);
38 printf(“accepted connection on fd %d\n”, fd);
39 service(fd, fd);
40 close(fd);
41 }
42 }

I’ll not trouble you with the details of all the
data structures; some of them (like the
sockaddr_in structure) look more

complicated than you might think they
should, but that’s because the API is
designed to support a wide variety of
protocols, not just TCP and IPV4.

The action starts at line 28, where our
server creates a socket, requesting an
address family of AF_INET (which means
that the socket will be identified by an IP

address and a port number) and a SOCK_
STREAM transport (which means we want
TCP not UDP). Lines 29–32 bind our socket
to port 1067 (as defined by SERVER_PORT
up at line 4); the mysterious constant
INADDR_ANY that appears here means that
we’re willing to listen for connections on any
of our server’s network interfaces. If the
machine has only one interface this isn’t
really an issue, but if a machine has, say, an
inward-facing connection and an internet-
facing connection, you could choose to
accept connections on only one of them.

Choose your socket
At line 34 we tell the system that we want to
accept connections on this socket;
specifically we set up a queue (of length 5)
for incoming connection requests. Then at
line 35 we enter our service loop. Line 37 will
block until a client comes along to connect;
when this happens the accept() call wakes
up and returns a new file descriptor (fd)
referencing the connection. At line 39 we call
our little service() function, which actually
carries out the conversation with the client,
then when this returns we’re careful to close
the file descriptor. If we didn’t do this we
would consume a new descriptor for each

Try It Out – Create a concurrent server

You can turn our iterative “upper case” server into
a concurrent server by forking a new child process
to deal with each client. Because child processes
inherit file descriptors from their parents, this is
rather easy. The schema looks like this:
#include <signal.h>
#include <stdlib.h>
....
while(1) {
 fd = accept(...);
 if (fork() == 0) {
 service(fd, fd); /* Child */
 exit(0);
 }
 else {
 close(fd); /* Parent */
}

To test, compile the program and run it as
before. Then open three or so terminal windows
and conduct a Telnet session with the server in
each of them, like we did before. Convince yourself
that you are conducting a separate conversation
with the server in each window. So far, so good.
Now quit out of a couple of those Telnet sessions
(leave one open) and look at the process table:
$ ps -e | grep ucc
11760 pts/4 00:00:00 ucconcurrent
11837 pts/4 00:00:00 ucconcurrent
11839 pts/4 00:00:00 ucconcurrent <defunct>
11858 pts/4 00:00:00 ucconcurrent <defunct>

Here, process 11760 is the original parent
process and 11837 is a child that’s connected to

the one remaining Telnet client. The other two are
the children that were servicing the now-closed
Telnet sessions. Unfortunately, because their
parent isn’t waiting for them they have entered
the zombie state. (We discussed the formation of
zombies in detail in LV004.) If you kill the original
parent (just type ^C in the window where you
started it) the zombies will disappear. But this isn’t
a satisfactory situation, because for a long-lived
server those zombies will eventually fill up the
process table. Fortunately they’re easy to prevent.
Just add the line:
signal(SIGCHLD, SIG_IGN);
in main(), before the while loop. This will stop the
zombies. You’ll also need an extra header file:
#include <signal.h>

You can download the completed code for the
concurrent server from the issue landing page on
www.linuxvoice.com.

There’s another way to write a concurrent
server, without using child processes, and that’s to
use the select() call. But the details are messy, and
we won’t consider it further here.

When I first met concurrent servers, I didn’t
understand how it was possible to maintain
multiple client connections on the server, when
they’re all using the same port. The answer is that
the TCP connection is really defined by four items:
the port number and IP address of the server,
and the port number and IP address of the client.
Provided at least one of these four is different, it’s
a different connection!

Even teddy bears have a choice between connectionless and connection-oriented protocols.

CORETECHNOLOGY

www.linuxvoice.com 67

client that connects and would eventually
run out. Then we simply loop back and await
the next client.

The service() function at lines 9–19 is
really just symbolic of providing a real, useful
service. The key points to note are that we
read a request from the client using the
descriptor returned by the accept(), and
write a response using the same descriptor.
Also notice the loop control at line 13. Each
read() will block until the client sends
another request; when the client eventually
closes the connection this read will return 0,
and the loop terminates.

The accept() call on line 37 also returns a
sockaddr_in structure (called ‘client’ in the
code) that contains (among other things)
the IP address of the client end of the
connection. We don’t use it in this example,
but many real-world servers use this
information for logging or access control.

This is a simple iterative server – it talks
to just one client at a time and any other that
try to connect in the meantime will have to
wait. The first five will have their connection
requests placed on the queue we created;
any beyond that will have their connections
refused. However, it is not difficult to turn
this into a concurrent server.

What about the client?
We can use a program such as nc (or even
Telnet) as a client to test our upper-case
server, but for completeness’ sake let’s write
a client program, too. I can’t bring myself to
inflict more C on you, so this one’s in Python:

#!/usr/bin/python
from socket import *
s = socket(AF_INET, SOCK_STREAM)
s.connect((‘localhost’, 1067))
s.send(‘Hello World’)
reply = s.recv(1000)
print reply

Just as in the server we begin by creating
a stream (TCP) socket using the ‘INET’
address family. Then, we actively connect to
the server at port 1067. Once the socket is
connected, we can send a request to it, and
read the reply. We see here the key
distinction between the client and the server:
the server passively listens for and accepts
connections; the client actively connects.

Notice that we don’t explicitly bind a port
number for the client; the system will bind
an (arbitrary) port for it to use. Once they are
connected, the client and server are really
just ‘peers’, and the application protocol will
determine the exchange from then on.
Typically the client transmits first (some sort
of request) and the server returns a reply.
For some services the server will transmit
first, for example the old Daytime server on
port 13 (which nobody runs any more)
works like that – you just connect to it and it
sends you a string. TCP is a wonderful
protocol, providing the illusion of a reliable,

connection-oriented transport on top of an
unreliable connectionless one (IP). But there
are some things TCP doesn’t do. For one
thing, it doesn’t preserve message
boundaries. If a client opens a connection
and writes, say, 300 bytes then 50 bytes
then 100 bytes down the connection, the
server will simply find that it has 450 bytes
waiting to be read. Usually, it’s left to the
application protocol to make it clear where
the message boundaries lie.

It’s a privilege
There’s an important rule in the Linux world
that says ports below 1024 are “privileged”
-- that is, a program can only bind a
privileged port if it’s running as root. This rule
goes back many years and probably
seemed like a good idea at the time,
because in theory it prevents regular
(non-root) users from masquerading as
bona-fide servers and capturing sensitive
login information.

Nowadays when many users have root
access to their PCs the rule makes very little
sense, and forces servers to run as root
simply so that they can bind their well-
known privileged port. A well-written server
will drop its user ID to a non-root account as
soon as it’s got the port bound.

Netcat (also known as nc) has been
described as the Swiss Army knife of
networking commands. You can use it to
create simple TCP or UDP clients or servers,
and it’s designed to be easy to script around.
We’ve already seen it in use as a client to
test our upper case server. Because it acts
as a filter, reading stdin and writing stdout
like filters usually do, we can perform all the
usual tricks of redirecting the streams. Here,
we pass the contents of a local file greet to
our server and capture the result in greet2:
$ nc < greet localhost 1067 > greet2

Using the -l (listen) option, you can also
cast nc in a server role. Here it is, being the
world’s most boring web server, delivering
the same file every time:
$ nc -l 8080 < somecontent.html

Now we can browse to port 8080 and
see the content. Of course, it’s not a real
web server so we don’t get a proper HTTP
response header back, but the browser
doesn’t seem to mind. Also useful is the
standard output from nc, which shows us
the actual HTTP request from the browser
(somewhat trimmed here):
$ nc -l 8080 < greet2
GET / HTTP/1.1
Host: localhost:8080
Connection: keep-alive
Cache-Control: max-age=0
Accept: text/html,application/xhtml+xml
User-Agent: Mozilla/5.0

Of course it’s a one-shot affair; nc will
terminate after serving the page once. But
with a bit of shell scripting we can wrap a

Command of the month: netcat
loop around it like this:
$ while true; do nc -l 8080 < somecontent.html; done

Now here’s a challenge for you: I
attempted to use nc in conjunction with tr
and a named pipe to cobble together an
equivalent to the upper case server at the
command line. Following a very similar
example in the man page, I tried:
$ mkfifo /tmp/f
$ cat /tmp/f | tr ‘a-z’ ‘A-Z’ | nc -l localhost 1234 > /
tmp/f

... then on the “client” side I ran:
$ nc localhost 1234

I can enter text, but then the whole thing
hangs. If you can figure out why this doesn’t
work (and especially if you can fix it) drop
me a line at drchrisbrown@linuxvoice.com.
I’d be delighted to hear from you!

“Once they are connected, the client and server are
really just ‘peers’, and the application protocol will
determine the exchange from then on.”

