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The term “sockets” refers to an API (a
set of library routines) that enables 
us to write clients and servers that 

communicate with the TCP and UDP 
protocols. A socket is sometimes described 
as a communication endpoint; it’s where the 
transport provider (the TCP or UDP layer) 
and the application programs meet.

Let’s talk first about the underlying IP 
layer. IP (Internet Protocol) has the 
important job of delivering a datagram to the 
correct recipient machine (based on its IP 
address). The IP layer handles all the routing 
decisions. However, IP does not offer 
guaranteed delivery. If a packet goes 
missing, it just goes missing; there’s no 
mechanism to automatically re-send it. Also, 
there’s no guarantee that the packets will 
arrive in the same order they were sent. 

Successive datagrams sent over a wide-
area network may get routed differently and 
arrive in the wrong order.

The TCP and UDP protocols lie on top of 
IP and are of more direct interest to us if 
we’re writing socket-based programs.

UDP
UDP stands for User Datagram Protocol and
is the simpler of the two. In fact it adds very 
little on top of IP except for the concept of a 
port number (a 16-bit value) that enables 
datagrams to be sent to a specific endpoint 
(effectively, to a specific application or 
service) on the destination machine. 

UDP sockets provide a “connectionless” 
communication model, and sometimes 
they’re compared to the postal service. 
Suppose I’m in regular postal contact with 
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Barney Rubble at Bedrock. Each and every
letter I send to him has to have Barney’s 
address on the envelope; based on that 
information alone the letter is routed 
through the postal system and delivered. I 
don’t get notification of delivery; I don’t even 
get notification of non-delivery.  

Every datagram sent by a program has to 
have a destination address (an IP address 
and port number) specified. When a 
program transmits a UDP datagram there is 
no guarantee that it will arrive and no 
notification if it doesn’t. UDP simply inherits 
the Internet Protocol’s failure of not 
guaranteeing to deliver the datagrams or get 
them in the right order. Of course, if the 
communication is taking place within a local 
network it’s difficult to see how datagrams 
might become mis-ordered; nonetheless, 
UDP makes no guarantees about delivery 
order. It is sometimes known (unfairly) as 
the “Unreliable Datagram Protocol”.

Information exchange
For many UDP-based services the lack of a
“first sent, first received” guarantee isn’t an 
issue. Take DNS for example: it listens on 
UDP port 53, receives a lookup request, and 
sends a reply. Next request, next reply. There 
is never a sequence of datagrams that form 
part of the same interaction. 

Other UDP-based services handle things 
differently. For example, the Trivial File 
Transfer Protocol (TFTP) (which does use a 
sequence of datagrams that form part of 
the same interaction), solves the problem by 
having every datagram explicitly 
acknowledged within the application layer, 
so that the whole thing stays in lock-step.

Now let’s look at TCP (Transmission 
Control Protocol). Like UDP, it’s also layered 
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over IP, and like UDP it adds the notion of
port numbers to identify a specific endpoint. 
But TCP is considerably more complicated, 
offering a reliable, sequenced, connection-
oriented service. 

Sometimes people refer to TCP as a 
“guaranteed” delivery service, but we should 
be clear what is meant by that. If you unplug 
the network cable from your server, TCP 
won’t guarantee to deliver packets to it, nor 
can you write in and ask for your money 
back when it fails. The reliability of a TCP 
connection results from a process of 
“positive acknowledgement with re-
transmission” – essentially, senders expect 
a confirmation of receipt of the segments of 
data they transmit, and will re-send them if 
they don’t get one. 

The main thing we need to understand is 
the connection-oriented nature of the 
service, and a common analogy is with a 
telephone call. Edward Bear wants to call 
Maisie Bear to invite her to a picnic. He 
provides addressing information “up front” 
when he dials Maisie’s phone number 
(analogous to specifying an IP address and 
a port number when establishing a TCP 
connection) and Maisie needs to answer the
phone (accept the connection) but from 
then on they have the illusion of a piece of 
copper wire connecting their phones. In my 
analogy, the client and server have a file 
descriptor referencing the connection. 
Edward and Maisie simply speak into the 
phone. Maisie doesn’t need to repeatedly tell 
the telephone company “please deliver this 
sentence to Edward Bear”, there is a 
connection and they simply speak on the 
phone. In my analogy, the client and server 
simply read and write on their file descriptor.

Design choices
The choice of UDP or TCP protocols has a
fundamental effect on the way in which 
services are written, particularly if they want 
to be able to service multiple clients 

simultaneously. A UDP-based service such 
as TFTP is basically holding out a bucket 
labelled “Port 69”. Any client can lob a 
datagram into the bucket, and in general the 
server will find itself fishing datagrams out 
of the bucket from various clients in some 
arbitrarily interleaved order. Usually, a 
UDP-based server is single-threaded, with 
the thread looping round on the request to 
“get the next datagram from the bucket”. 
TCP-based services are different; each 
accepted connection results in a new file 
descriptor. In the simplest case, a server 
might complete its dialog with one client 
before accepting a connection from the 
next, but this will keep subsequent clients 
waiting if a client has opened the connection 
and then gone for a cup of tea. More 

commonly, TCP servers use a process-per-
client or thread-per-client model to achieve 
concurrency when serving multiple clients. 

I’m going to inflict some C code on you to 
show how sockets really work. Our example 
is a simple TCP-based server; the “service” is 
simply to convert any text received by the 
client to upper case, and send it back.

Here’s the code. (The lines numbers are 
just for reference; they aren’t part of the file)
 1  #include <stdio.h>
 2  #include <netinet/in.h>
 3  
 4  #define SERVER_PORT 1067
 5  #define BUFSIZE 100
 6  
 7  /* ------ service() ------- */
 8  

Try It Out – Build and test the upper-case server 

Client and server ends in a TCP connection

You can easily build this server. Either type the code 
in, or grab it from our magazine landing page on 
www.linuxvoice.com.

Put it into a file called ucserver.c. Next, ensure 
you’ve got the gcc compiler installed. On Ubuntu, 
for example it’s installed simply as:
$ sudo apt-get install gcc

Now build your executable:
$ gcc ucserver.c -o ucserver

Assuming it compiles without errors, run it in the 
foreground:
./ucserver

Now open a new terminal window and verify that 
the server is listening on the expected port:
$ lsof -i TCP:1067
COMMAND    PID  USER   FD   TYPE DEVICE SIZE/OFF 
NODE NAME
ucserver 12575 chris    3u  IPv4 272606      0t0  TCP 
*:1067 (LISTEN)

We can use netcat (also know as nc) as a handy 
client program to test our server by telling it to 
connect to port 1067. All nc is doing is connecting 
to the port and ferrying lines of text back and forth, 
like this:

$ nc localhost 1067
Hello World
HELLO WORLD
This is a test
THIS IS A TEST
^D

Success! Not the world’s most exciting service 
I grant you. But what do you expect for 40 lines of 
code? You can also run the test “non-interactively” 
by piping into nc like this:
$ echo “Hello World” | nc localhost 1067
HELLO WORLD
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 9  void service(int in, int out)
10  {
11    char buffer[BUFSIZE];
12    int i, len;
13    while ((len = read(in, buffer, BUFSIZE)) > 0)
14    {
15      for (i = 0 ; i < len; i++)
16        buffer[i] = toupper(buffer[i]);
17      write(out, buffer, len);
18    }
19  }
20  
21  /* ---- Main program ---- */
22  
23  void main()
24  {
25    int sock, fd, client_len;
26    struct sockaddr_in server, client;
27  
28    sock = socket(AF_INET, SOCK_STREAM, 0);
29    server.sin_family = AF_INET;
30    server.sin_addr.s_addr = htonl(INADDR_ANY);
31    server.sin_port = htons(SERVER_PORT);  
32    bind(sock, (struct sockaddr *)&server, 
sizeof(server));
33  
34    listen(sock, 5);
35    while (1) {
36      client_len = sizeof(client);
37      fd = accept(sock, (struct sockaddr *)&client, 
&client_len);
38      printf(“accepted connection on fd %d\n”, fd);
39      service(fd, fd);
40      close(fd);
41    }
42  }

I’ll not trouble you with the details of all the
data structures; some of them (like the 
sockaddr_in structure) look more 

complicated than you might think they 
should, but that’s because the API is 
designed to support a wide variety of 
protocols, not just TCP and IPV4. 

The action starts at line 28, where our 
server creates a socket, requesting an 
address family of AF_INET (which means 
that the socket will be identified by an IP 

address and a port number) and a SOCK_
STREAM transport (which means we want 
TCP not UDP). Lines 29–32 bind our socket 
to port 1067 (as defined by SERVER_PORT 
up at line 4); the mysterious constant 
INADDR_ANY that appears here means that 
we’re willing to listen for connections on any 
of our server’s network interfaces. If the 
machine has only one interface this isn’t 
really an issue, but if a machine has, say, an 
inward-facing connection and an internet-
facing connection, you could choose to 
accept connections on only one of them.

Choose your socket
At line 34 we tell the system that we want to
accept connections on this socket; 
specifically we set up a queue (of length 5) 
for incoming connection requests. Then at 
line 35 we enter our service loop. Line 37 will 
block until a client comes along to connect; 
when this happens the accept() call wakes 
up and returns a new file descriptor (fd) 
referencing the connection. At line 39 we call 
our little service() function, which actually 
carries out the conversation with the client, 
then when this returns we’re careful to close 
the file descriptor. If we didn’t do this we 
would consume a new descriptor for each 

Try It Out – Create a concurrent server

You can turn our iterative “upper case” server into 
a concurrent server by forking a new child process 
to deal with each client. Because child processes 
inherit file descriptors from their parents, this is 
rather easy. The schema looks like this:
#include <signal.h>
#include <stdlib.h>
....
while(1) {
  fd = accept( ... );
  if (fork() == 0) {
    service(fd, fd); /* Child */
    exit(0);
  }
  else {
    close(fd);      /* Parent */
}

To test, compile the program and run it as 
before. Then open three or so terminal windows 
and conduct a Telnet session with the server in 
each of them, like we did before. Convince yourself 
that you are conducting a separate conversation 
with the server in each window. So far, so good.
Now quit out of a couple of those Telnet sessions 
(leave one open) and look at the process table:
$ ps -e | grep ucc
11760 pts/4    00:00:00 ucconcurrent
11837 pts/4    00:00:00 ucconcurrent
11839 pts/4    00:00:00 ucconcurrent <defunct>
11858 pts/4    00:00:00 ucconcurrent <defunct>

Here, process 11760 is the original parent 
process and 11837 is a child that’s connected to 

the one remaining Telnet client. The other two are 
the children that were servicing the now-closed 
Telnet sessions. Unfortunately, because their 
parent isn’t waiting for them they have entered 
the zombie state. (We discussed the formation of 
zombies in detail in LV004.) If you kill the original 
parent (just type ^C in the window where you 
started it) the zombies will disappear. But this isn’t 
a satisfactory situation, because for a long-lived 
server those zombies will eventually fill up the 
process table. Fortunately they’re easy to prevent. 
Just add the line:
signal(SIGCHLD, SIG_IGN);
in main(), before the while loop. This will stop the 
zombies. You’ll also need an extra header file:
#include <signal.h>

You can download the completed code for the 
concurrent server from the issue landing page on 
www.linuxvoice.com.

There’s another way to write a concurrent 
server, without using child processes, and that’s to 
use the select() call. But the details are messy, and 
we won’t consider it further here.

When I first met concurrent servers, I didn’t 
understand how it was possible to maintain 
multiple client connections on the server, when 
they’re all using the same port. The answer is that 
the TCP connection is really defined by four items: 
the port number and IP address of the server, 
and the port number and IP address of the client. 
Provided at least one of these four is different, it’s 
a different connection!

Even teddy bears have a choice between connectionless and connection-oriented protocols.
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client that connects and would eventually
run out. Then we simply loop back and await 
the next client.

The service() function at lines 9–19 is 
really just symbolic of providing a real, useful 
service. The key points to note are that we 
read a request from the client using the 
descriptor returned by the accept(), and 
write a response using the same descriptor. 
Also notice the loop control at line 13. Each 
read() will block until the client sends 
another request; when the client eventually 
closes the connection this read will return 0, 
and the loop terminates.

The accept() call on line 37 also returns a 
sockaddr_in structure (called ‘client’ in the 
code) that contains (among other things) 
the IP address of the client end of the 
connection. We don’t use it in this example, 
but many real-world servers use this 
information for logging or access control.

This is a simple iterative server – it talks 
to just one client at a time and any other that 
try to connect in the meantime will have to 
wait. The first five will have their connection 
requests placed on the queue we created; 
any beyond that will have their connections 
refused. However, it is not difficult to turn 
this into a concurrent server.

What about the client?
We can use a program such as nc (or even
Telnet) as a client to test our upper-case 
server, but for completeness’ sake let’s write 
a client program, too. I can’t bring myself to 
inflict more C on you, so this one’s in Python:

#!/usr/bin/python
from socket import *
s = socket(AF_INET, SOCK_STREAM)
s.connect((‘localhost’, 1067))
s.send(‘Hello World’)
reply = s.recv(1000)
print reply

Just as in the server we begin by creating
a stream (TCP) socket using the ‘INET’ 
address family. Then, we actively connect to 
the server at port 1067. Once the socket is 
connected, we can send a request to it, and 
read the reply. We see here the key 
distinction between the client and the server: 
the server passively listens for and accepts 
connections; the client actively connects. 

Notice that we don’t explicitly bind a port 
number for the client; the system will bind 
an (arbitrary) port for it to use. Once they are 
connected, the client and server are really 
just ‘peers’, and the application protocol will 
determine the exchange from then on. 
Typically the client transmits first (some sort 
of request) and the server returns a reply. 
For some services the server will transmit 
first, for example the old Daytime server on 
port 13 (which nobody runs any more) 
works like that – you just connect to it and it 
sends you a string. TCP is a wonderful 
protocol, providing the illusion of a reliable, 

connection-oriented transport on top of an 
unreliable connectionless one (IP). But there 
are some things TCP doesn’t do. For one 
thing, it doesn’t preserve message 
boundaries. If a client opens a connection 
and writes, say, 300 bytes then 50 bytes 
then 100 bytes down the connection, the 
server will simply find that it has 450 bytes 
waiting to be read. Usually, it’s left to the 
application protocol to make it clear where 
the message boundaries lie.

It’s a privilege
There’s an important rule in the Linux world
that says ports below 1024 are “privileged” 
-- that is, a program can only bind a 
privileged port if it’s running as root. This rule 
goes back many years and probably 
seemed like a good idea at the time, 
because in theory it prevents regular 
(non-root) users from masquerading as 
bona-fide servers and capturing sensitive 
login information. 

Nowadays when many users have root 
access to their PCs the rule makes very little 
sense, and forces servers to run as root 
simply so that they can bind their well-
known privileged port. A well-written server 
will drop its user ID to a non-root account as 
soon as it’s got the port bound.  

Netcat (also known as nc) has been
described as the Swiss Army knife of 
networking commands. You can use it to 
create simple TCP or UDP clients or servers, 
and it’s designed to be easy to script around. 
We’ve already seen it in use as a client to 
test our upper case server. Because it acts 
as a filter, reading stdin and writing stdout 
like filters usually do, we can perform all the 
usual tricks of redirecting the streams. Here, 
we pass the contents of a local file greet to 
our server and capture the result in greet2:
$ nc < greet localhost 1067 > greet2

Using the -l (listen) option, you can also
cast nc in a server role. Here it is, being the 
world’s most boring web server, delivering 
the same file every time:
$ nc -l 8080 < somecontent.html

Now we can browse to port 8080 and
see the content. Of course, it’s not a real 
web server so we don’t get a proper HTTP 
response header back, but the browser 
doesn’t seem to mind. Also useful is the 
standard output from nc, which shows us 
the actual HTTP request from the browser 
(somewhat trimmed here):
$ nc -l 8080 < greet2
GET / HTTP/1.1
Host: localhost:8080
Connection: keep-alive
Cache-Control: max-age=0
Accept: text/html,application/xhtml+xml
User-Agent: Mozilla/5.0

Of course it’s a one-shot affair; nc will
terminate after serving the page once. But 
with a bit of shell scripting we can wrap a 

Command of the month: netcat
loop around it like this:
$ while true; do nc -l 8080 < somecontent.html; done

Now here’s a challenge for you: I
attempted to use nc in conjunction with tr 
and a named pipe to cobble together an 
equivalent to the upper case server at the 
command line. Following a very similar 
example in the man page, I tried:
$ mkfifo /tmp/f
$ cat /tmp/f | tr ‘a-z’ ‘A-Z’ | nc -l localhost 1234 > /
tmp/f

... then on the “client” side I ran:
$ nc localhost 1234

I can enter text, but then the whole thing
hangs. If you can figure out why this doesn’t 
work (and especially if you can fix it) drop 
me a line at drchrisbrown@linuxvoice.com. 
I’d be delighted to hear from you!

“Once they are connected, the client and server are 
really just ‘peers’, and the application protocol will 
determine the exchange from then on.”


