
CORETECHNOLOGY

www.linuxvoice.com64

P luggable Authentication Modules
(known to its friends as PAM) is one 
of those technologies that most 

users are entirely unaware of, like the engine 
management computer in their Volvo. 
Basically, PAM provides a framework within 
which an application can assemble one or 
more stacks of PAM modules to perform the 
authentication tasks it needs to perform and 
to implement the security policy that it (or 
the system administrator) wants to 
implement. 

From a system administrator’s point of 
view, PAM has two parts. The first is a set of 

configuration files in /etc/pam.d that define 
how an application’s PAM stacks are to be 
assembled. The config file is usually named 
after the application, so that (for example) 
the file for the ssh daemon would be  
/etc/pam.d/sshd. The second part is a 
collection of PAM modules that are 
implemented as dynamically linked libraries. 
Red Hat puts them in /lib64/security, 
though different distros choose different 
directories. The range of tasks that these 
modules perform is quite diverse, ranging 
from doing traditional Unix-style 
authentication (pam_unix) to enforcing 
password strength (pam_cracklib) and 
locking an account after too many failed 
logins (pam_tally2). The PAM modules table 
on the facing page provides a longer list, but 
it is by no means complete. The modules 
listed in the table are relatively mainstream 
but they may not all be installed by default 
on your distro.

By the way, PAM is entirely in userspace. 
There are no PAM kernel modules.

PAM in a paragraph
Here’s how it works. A program that wants
to use PAM links to a library called libpam. 
This is probably the least visible part of PAM 
but it’s really the heart of the whole thing. 
Under control of the program’s PAM config 
file (we’ll see an example in a moment), 
libpam assembles up to four stacks of 
modules that the application can use. The 
four stacks are called auth, account, 
password and session, and they refer to the 

four classes of activity that PAM helps to 
manage. Typically, an application won’t use 
all four stacks; it may only need the auth and 
session stacks, for example. 

Let’s suppose you’re a program that 
wants to perform authentication. Maybe 

PAM: Pluggable Authentication Modules
Take control of your system’s security policy by mastering the minutiae of PAM.

CORE
TECHNOLOGYA veteran Unix and Linux 

enthusiast, Chris Brown has 
written and delivered open 
source training from New Delhi 
to San Francisco, though not on 
the same day.

you’re the classic command line login
program. Through pamlib, you call the 
PAM modules in your auth stack, in order. 
You don’t even know what those modules 
are; this information is held in an external 
configuration file, which pamlib knows 
about, but you don’t. Each PAM module 
performs its function, and returns a 
‘success’ or ‘failure’ status. The status values 
of the modules combine (according to rules 
in the config file) to provide a success or 
failure status for the stack as a whole.

So the basic concept is not really that 
hard. The devil is in the details. Let’s take a 
look at a typical PAM configuration file:
auth required pam_securetty.so
auth required pam_unix.so shadow nullok
auth required pam_nologin.so
account required pam_unix.so
password required pam_cracklib.so retry=3
password required pam_unix.so shadow nullok 
use_authtok
session required pam_unix.so

This particular file assembles all four
stacks – auth, account, password and 

Dive under the skin of your Linux system to find out what really makes it tick.

Disable direct root login
Disabling direct root logins (so that you have to log 
in as a regular user then use su to switch to root) 
is a great way to improve security. You can do 
this by adding the pam_securetty module into the 
‘auth’ stack. No, I haven’t mis-spelled it; ‘securetty’ 
means ‘secure terminal’, and it harks back to the 
days when people logged in on text-based console 
devices, some of which were secure (behind a 
locked door). 

The pam_securetty module consults the file /
etc/securetty to find out which terminals are 
deemed secure. It will fail if root tries to log in on 
a terminal not listed here. In particular, if the file 
exists (but is empty) root isn’t allowed to log in 
anywhere. Start by creating an empty list of secure 

terminals:
# echo “none” > /etc/securetty

Note that a non-existent securetty file has an 
entirely different effect than an empty one. If the 
file doesn’t exist, root can log in anywhere. If the 
file is empty, root can log in nowhere.

Next, add an entry near the top of the auth stack 
in /etc/pam.d/system-auth, like this:
auth    required    pam_securetty.so

With this change in place you should find that 
root can no longer log in on a text console. Note 
that, to prevent root logging in on the graphical 
desktop, you will probably need to make similar 
changes to the PAM stacks for the display 
manager, such as gdm.

“The basic concept that underpins PAM is not really 
that hard. The devil is in the details.”



CORETECHNOLOGY

www.linuxvoice.com 65

session. The auth stack has three modules;
the password stack has two; the account 
and session stacks each have just one. So 
to perform authentication, for example, the 
program first calls pam_securetty. This 
module can restrict root access to specific 
‘secure’ terminals. Then it calls pam_unix. 
This is an important PAM module; it handles 
the traditional authentication against a local 
account database. Finally, pam_login is 
invoked to prevent non-root logins if the file  
/etc/nologin exists. The nologin file is 
usually created during the shutdown 
sequence; its purpose is to stop regular 
users logging in during the shutdown period.

The second field in the PAM config file 
specifies the control flag, and you will notice 
that all of these modules are marked as 
required. This means that they all have to 

succeed for the stack as a whole to 
succeed. The other control flags (requisite, 
sufficient and optional) are described on 
page 66 and I’ll re-visit them later. You’ll also 
notice that some of these modules have 
parameters passed to them. For example in 
the password stack, pam_cracklib has the 
parameter retry=3. Some of the modules 
even have their own configuration files.

Factoring out
It’s common for the same pieces of the PAM
stack to appear in the configuration of 
several applications. To make this easier, 
there’s an include control flag that brings in 
stack definitions from an external file. On a 
Red Hat-style system the most widely used 
example of this is the file /etc/pam.d/
system-auth. You’ll find this file included in 
the PAM stacks of most applications 
through a line like this:

auth include system-auth
Other distros do things slightly differently.

On Ubuntu there are four of these “common” 
files (common-auth, common-account, 
common-session and common-password) 
and they are included by lines of the form:
@include  common-auth

“Factoring out” pieces of the PAM stack in
this way not only makes the individual PAM 
config files shorter, it also means that you 
can change the login policy for most 
PAM-aware applications just by editing the 
one common file. As an example, Red Hat 
has a little tool called authconfig-tui, which 
you can use to enable authorisation against 
LDAP,  Kerberos, or Active Directory 
accounts. The only PAM file that this tool 
needs to adjust is system-auth. There are 
even some applications whose PAM 
configurations do nothing except include the 
relevant stacks from system-auth.

A sampling of PAM modules

Module  What it does
pam_unix  Traditional password authentication
pam_cracklib Checks password strength against dictionary words
pam_passwdqc Checks password strength based on length and character classes
pam_securetty Limits root login to secure terminals
pam_tally2  Counts failed logins, denies access if too many attempts fail
pam_deny  Denies access. Used as a ‘backstop’ at the bottom of a stack
pam_time  Implements time-of-day and day-of-week login restrictions
pam_shells  Restricts access to the shells listed in /etc/shells
pam_timestamp Enables a user to authenticate based on a recent successful authentication
pam_env  Sets environment variables when a user logs in
pam_abl  Maintains a blacklist of hosts making repeated failed logins
pam_limits  Sets limits on resource usage during a login session
pam_rootok Allows authentication to succeed if the user is root
pam_mkhomedir Creates a user’s home directory if it doesn’t exist

Preventing non-root reboots 
By default, my CentOS 6.5 system allows a non-
root user to halt or reboot the system, using the 
reboot command. This is probably acceptable 
for a single-user desktop machine but definitely 
not a good idea on a server. We can modify this 
policy by changing the PAM configuration.

Here’s the default PAM auth stack for the 
reboot program, from /etc/pam.d/reboot:
auth	 sufficient	 pam_rootok.so
auth required pam_console.so
which says you can go ahead if you’re root, or if 
you’re logged in on the console.

Change the auth stack in /etc/pam.d/reboot 
as follows:
auth	 sufficient	 pam_rootok.so
auth required pam_deny.so

Now, if we’re root we’re fine, but if not, we’re 
doomed. With this change in place, attempts to 
reboot as a non-root user should fail:
$ reboot
need to be root

Defeat brute-force login attempts
The module pam_tally2 can be used to count 
failed login attempts and to lock accounts for 
a specified length of time if there are too many. 
Try adding a line like this to the auth stack in 
system-auth:
auth    required    pam_tally2.so  deny=3   even_
deny_root  unlock_time=600

This will lock a user out for 600 seconds after 
three failed login attempts. Pick a user account 
you know the password for and deliberately 
enter the wrong password three times in 
succession. Subsequent login attempts should 
then fail even if you use the correct password.

From a command prompt you can query the 
failed login count with the command:
# pam_tally2 --user bob
where bob is the account name, and reset the 
count back to zero with:
# pam_tally2 --user bob --reset

Like several other technologies we now take for granted in Linux, PAM originated with Sun 
Microsystems. It dates from 1995, and was soon adopted (1996) into Red Hat Linux.



CORETECHNOLOGY

www.linuxvoice.com66

Wait! There’s more!
It turns out there’s more to PAM
configuration than simply assembling 
stacks of modules. For a start, many PAM 
modules can be passed parameters 
(specified within the PAM config file). Let’s 
look at a couple of examples:

The pam_cracklib module (which does 
password strength checking and is usually 
found in the password stack) accepts a 
parameter like minlen=9 that specifies the 
minimum password length; it also accepts 
retry=3, which says to give the user three 
attempts to enter an acceptable password. 
So you might see a line like this:
password  required  pam_cracklib retry=3 
minlength=9

Going a step further, some PAM modules
have their own configuration files. For 
example, pam_time (which implements 
time-of-day access control) reads its 
configuration from /etc/security/time.conf, 
where you might find rules of breathtaking 
obscurity, such as this:
login ; * ; !fred ; MoTuWe0800-2000

By the way, although pam_time plays its
part in determining whether a user is 
allowed to log in, it is not concerned with 
authenticating the user, and so it belongs in 
the account stack, not the auth stack.

In most cases the PAM modules have 
man pages that document these 
parameters. (The command apropos pam 
may help get you a list of these.) Sometimes 
the individual config files have man pages 
too. In some cases the documentation is a 

little thin on the ground, but it’s a very great 
deal better now than it was in the early days 
of PAM.

Why bother?
It’s when you get down into the details of
PAM – the control flags and the large range 
of modules with their parameters and config 
files – that you start to get a feel for its 
complexity. And since Linux distributions 
invariably include working PAM 
configurations out of the box it’s reasonable 

to ask why you should care. Well, I’d wager 
that many system administrators actually 
don’t care – they leave their default PAM 
configurations well alone. But there may be 
times when you need to bring extra PAM 
modules into play to implement pieces of 
your security policy, such as “users are only 
allowed to log in between 10am and 4pm on 

Restrict su to members of the wheel group
By default, anyone can use su to switch to root if 
they know the root password. You can tighten up on 
this using the pam_wheel module, which tests that 
you’re a member of the wheel group (or some other 
specified group). 

As an aside, the use of the “wheel” group for 
privileged users goes back to the early days of Unix, 
but I have never found a satisfactory explanation of 
why it’s called “wheel”. The default auth stack for 
su looks like this:
auth	 sufficient	 pam_rootok.so

auth include system-auth
which says that if you’re root, you’re in, otherwise 
you have to go through the standard system-auth 
stack. You can adjust this like so:
auth	 sufficient	 pam_rootok.so
auth required pam_wheel.so use_uid
auth include system-auth
which adds the requirement that we belong to the 
wheel group. To check this out you will need to add 
at least one account to this group, for example:
# usermod -G wheel chris

You should now find that the user chris can su to 
root, but a user who is not a member of the wheel 
group cannot. 

To illustrate the importance of the control flags, 
try changing the auth stack of su to look like this:
auth	 sufficient	 pam_rootok.so
auth	 sufficient	 pam_wheel.so	trust	use_uid
auth include system-auth

The stack now says that if you’re a member of 
the wheel group you can su to root without needing 
to authenticate at all. Try it!

PAM control flags

Control flag What it means
sufficient  If the module succeeds, the stack succeeds and no further modules are called
required  If the module fails, the stack will fail, but remaining modules will be called
requisite  If the module fails, the stack will fail; no more modules are called
optional  Success or failure of the module is ignored
include  Include a piece of stack defined in a separate file

PAM-aware applications assemble stacks of modules to implement their security policy, under 
control of a configuration file in /etc/pam.d.

Stacks of PAM
modules

(in/lib64/security)

auth

PAM-aware program (eg login)

account password session

/etc/pam.d/loginlibpam

On Ubuntu there are four of the “common” files 
(common-auth, common-account, common-
session and common-password).



CORETECHNOLOGY

www.linuxvoice.com 67

Mondays and Tuesdays” or “passwords
must be a minimum of 10 characters with 
three character classes”. Or you might need 
to augment your login process to include 
user accounts stored in a Windows Active 
Directory (via the winbind daemon). Or 
maybe you’re plagued by brute-force login 
attempts from a specific host and would like 
to block them. There are PAM modules to do 
all of these things.

Getting to grips with the control flags
I’ve been trying hard to avoid a proper
discussion of the control flags in PAM 
because, frankly, they are painful and I don’t 
like to inflict pain. But they have a major 
impact in the way PAM stacks work and we 
can’t really ignore them. There are two styles 
of syntax for defining the control flags – a 
simple one and a more complicated one.

We’ll take the simple syntax first – it uses 
the four keywords sufficient, required, 
requisite and optional. Recall that each PAM 
module returns a ‘success’ or ‘failure’ status. 
The control flags specify how the status 
returned by the individual modules in a stack 
contributes to the success or failure of the 
stack as a whole. Consider a stack such as 
the example we showed earlier, in which all 
modules in the stack are ‘required’. Then all 
modules must succeed for the stack to 
succeed. This seems to me the most 
straightforward and obvious way for 
modules to combine. 

The required flag is similar, but, if a 
module fails, the stack is immediately 
abandoned – later modules are not invoked. 
The sufficient flag does what it says on the 
tin – if the module succeeds, the stack will 
succeed and later modules are not called. 
Finally, the optional flag means that the 
return status of the module is ignored. This 
flag is often found within the session stack, 
where modules are called for their side 
effect (such as setting environment 
variables or creating an initial home 

directory) rather than for a yes/no decision.
There’s a more complex syntax that can be 
used for the control flags, which gives you 
finer grain control over querying the return 
status of a PAM module, and more options 
on deciding what to do in each case. This 
form of control flag consists of a series of 
status=action pairs, in square brackets. 
Here’s an example:
auth [user_unknown=ignore success=ok default=bad] 
pam_securetty.so

This example is being used to distinguish
the case where the username is unknown 
from the case where the module’s ‘secure 
tty’ test fails, and to react differently in the 
two cases. The return status values are not 
well documented. These extensions, which 
almost turn PAM configuration into a 
programming language in its own right, are 
difficult to get your head round, and (I’m 
pleased to say) don’t seem to be very 
common in modern PAM configurations.

So there you have it. Next time the 
conversation in the pub turns to PAM, you 
can smile enigmatically and say “ah yes, I 
know PAM well!”  

The ldd command answers the question
“Which libraries does this application use?”. 
Here’s a simple example:
# ldd /bin/bash
  linux-vdso.so.1 =>
  libtinfo.so.5 => /lib64/libtinfo.so.5
  libdl.so.2 => /lib64/libdl.so.2
  libc.so.6 => /lib64/libc.so.6
  /lib64/ld-linux-x86-64.so.2

It’s not at first sight the most exciting of
commands, but there are some quirks here 
that you can uncover, expecially if you wrap 
a little shell scripting around it to answer the 
opposite question: “Which programs are 
linked against this library?” 

Here’s the script I came up with – it could 
be spruced up in several ways but it does 
the basic job:

#!/bin/bash
# Script “whatuses”
# Finds which executables are linked against a given 
library

lib=$1
for x in /usr/bin/*  # Better to traverse entire $PATH
do
  if ldd $x 2> /dev/null | grep $lib > /dev/null 2>&1
  then
    echo $x uses $lib
fi

done
Here are a couple of examples. First,

there’s an access control mechanism called 
‘TCP wrappers’, which is implemented by the 
library libwrap.so. So we can answer the 
question “Which apps use TCP wrappers?” 

Command of the month: ldd 
like this:
 ./whatuses libwrap
/usr/bin/empathy uses libwrap
/usr/bin/gnome-shell uses libwrap
/usr/bin/pulseaudio uses libwrap
/usr/bin/vinagre uses libwrap

I’ve edited most of the output for brevity.
Or we can ask “Which apps are PAM-aware?” 
by looking for linkage against libpam:
# ./whatuses libpam
/usr/bin/at uses libpam
/usr/bin/login uses libpam
/usr/bin/passwd uses libpam
/usr/bin/su uses libpam
/usr/bin/vncpasswd uses libpam

Again, the output is trimmed – Linux
dependencies can get complicated, but ldd 
can help make sense of them!

Don’t leave home without the key

A word of warning if you’re playing around with 
your PAM set-up. It is extremely easy to create 
a configuration which won’t let you log in at 
all. To reduce the risk of locking yourself out 
of your house and ending up doing a rescue 
boot, I strongly recommend that you keep a 
root login open (maybe on a text-based console 
terminal or maybe an ssh login from another 
machine) until you’re confident that your new 
configuration works. You can test PAM (mostly) 
by logging in on a console terminal or by doing 
an ssh login to localhost. Alternatively, test 
your configuration on a virtual machine with a 
snapshot you can drop back to.

PAM’s four management classes

Stack  What it’s for
auth  Verifies the credentials of a user (logging in)
account  Account management (eg account expiry or time-of-day restrictions)
password  Password management (changing your password)
session  Session management (anything else you want to do when a user logs in)


