
CODING MANDELBROT & PYTHON

www.linuxvoice.com

WHY DO THIS?
• Create hugely complex

results from a simple
equation.

• Turn this into pretty
graphs!

The image below depicts the famous
Mandelbrot set. You may have seen it on
posters, music videos or demonstrations of

computer power – back in the 1990s it took hours to
plot it using home computers. Despite its organic
intricate appearance it is in fact the result of extremely
simple mathematics.

The maths hasn’t changed since the 1990s, but
computing power has come on in leaps and bounds,
so the psychedelic beauty of the Mandelbrot set can
be ours to play with. We’ll be using the Python
programming language because it’s popular, easy to
learn, and has well established numerical and plotting
extensions. It’s no accident that Python is the tool of
choice in the scientific community, as well as
powering some of the world’s largest infrastructures.

As an interpreted, rather than compiled language,
Python gives immediate feedback. We’re going to take
this interactivity one step further by using IPython,
which is Python packaged with an interactive web
interface. You can just type instructions and get
results straight away. You avoid having to edit source

code files and using shells to execute the programs.
You can also share your web-based “notebooks” by
exporting them, or sharing them online.

There are pre-packaged distributions of IPython
including the numerical and graphical extensions, so
you don’t have to worry about installing and
configuring the right versions and their many
dependencies. Even better, because IPython is used
purely through a web browser, you can use one of
several online services offering IPython in the cloud.
You don’t have to install any software at all, and you
can work on your code and demonstrate the results
from any internet-connected device that supports a
modern browser.

The code in this article series was tested with the
online service from wakari.io, which offers free trial
accounts, and the locally installed IPython Anaconda
free distribution from continuum.io.

Whether you select an online service or install your
own IPython distribution, check to see if it works by
firing it up and clicking on New Notebook. Type 2*3
into it and click the Run button, which looks like an
audio play selector. If it responds with ‘6’, great – you
have a working IPython environment!

Beginning Python
Let’s now learn just enough Python to make our own
Mandelbrot fractal. Fire up IPython and open a new
notebook. In the next ready cell, labelled In [], type the
following code and click Play (or press Ctrl+Enter).
print “Hello World!”

You should get a response that simply prints the
phrase “Hello World!” You should see that issuing the
second instruction didn’t remove the previous cell with
its instruction and output answer. This is useful when
you’re slowly building up a solution of several parts.

The following code introduces the key idea of
variables. Enter and run it in a new cell. If there is no
new empty cell, click the button with the downward
pointing arrow labelled ‘Insert Cell Below’, not to be
confused with the one labelled “Move Cell Down”.
x = 10
print x
print x+5
print z

The first line, x = 10, looks like a mathematical
statement that says x is 10. In Python this means that
x is set to 10, that is, the value 10 is placed in an
virtual box called x. That 10 stays there until further

PYTHON: MAKE YOUR OWN
MANDELBROT SET
With a smattering of Python and a bit of clever maths you too can
create a bit of beautiful chaos inside your Linux box.

 TUTORIAL

96

TARIQ RASHID

The following images
are closeups of parts of
this same fractal. The
Mandelbrot set is in fact
infinitely detailed, and
contains a wide variety of
patterns.

MANDELBROT & PYTHON CODING

www.linuxvoice.com

PRO TIP
Explore the Mandelbrot
fractal using the
interactive XaoS open
source software at
http://bit.ly/1vLdz52 or
through a web browser
http://bit.ly/1lbXYL1.

97

notice. We shouldn’t be surprised that print x prints
the value of x, which is 10. Why doesn’t it just print x?
Python will evaluate whatever it can, and x can be
evaluated to the value 10, so it prints that. The next
line, print x+5 evaluates x+5, which is 10+5 or 15, so
we expect it to print 15.

What happens with the line print z when we haven’t
assigned a value to it like we have with x? We get an
error message telling us about the error of our ways,
trying to be helpful as possible so we can fix it.

Automating lots of work
Computers are great for doing similar tasks many
times – they don’t mind and they’re very quick
compared with humans with calculators. Let’s see if
we can get a computer to print the first 10 squared
numbers, starting with 0 squared, 1 squared, then 2
squared and so on. We expect to see a printout of
something like 0, 1, 4, 9, 16, 25, and so on. Issue the
following code into the next ready cell and run it.
range(10)

You should get a list of 10 numbers, from 0 up to 9.
This is great because we got the computer to do the
work to create the list – we didn’t have to do it
ourselves.

A common way to get computers to do things
repeatedly is by using loops. The word loop does give
you the right impression of something going round
and round potentially endlessly. Rather than define a
loop, it’s easiest to see a simple one. Enter and run
following code in a new cell.
for n in range(10):

print n
pass

print “done”
There are three new things going on here. The first

line has the range(10) command that we saw before,
which creates a list of numbers from 0 to 9. The for n

in is the bit that creates a loop, and here it does
something for every number in the list, and keeps
count by assigning the current value to the variable n.
We saw variables earlier, and this is just like assigning
n=0 during the first pass of the loop, then n=1, then
n=2, until n=9, the last item in the list.

The next line print n prints the value of n, just as
before. We expect all the numbers in the list to be
printed. But notice the indent before print n. This is
important in Python as indents are used meaningfully
to show which instructions are subservient to others,
in this case, the loop created by for n in The loop
ends when the code stops being indented. Here, we’ve
used a pass instruction to highlight the end of the loop
(pass is superfluous, and Python will ignore it but it
helps the interpreter exit a code block. You can remove
it if you want). This means we only expect done to be
printed once, and not 10 times.

It should be clear now that we can print the squares
by printing n*n. In fact we can make the output more
helpful with phrases like “The square of 3 is 9”. The
following code shows this change inside the loop.
Note how the variables are not inside quotes and are
therefore evaluated.
for n in range(10):

print “The square of”, n, “is”, n*n
pass

print “done”
This is already quite powerful. We can get the

computer to do a lot of work very quickly. We could
easily make the number of loop iterations much larger
by using range(100) or even range(100000) if we
wanted. Try it!

Functions
Python makes it easy to create reusable computer
instructions. Like mathematical functions, these
reusable snippets of code, also called functions, stand

Fractals

Before we dive in and start coding, let’s take a
step back and consider again some of the patterns
we find in nature or create ourselves. Look at the
following three images.

The first set of shapes is very regular. They’re
what most people would consider mathematical
shapes, but there isn’t enough interesting detail in
them to hold our attention for long. The last image

is entirely random noise – there isn’t a lack of
detail, but now there isn’t enough structure in the
image to keep us interested. The cauliflower has
repeated patterns at different scales. These
patterns also have just the right amount of variation
to keep us interested. This is a common theme
throughout nature, where clouds, mountains, rivers,
trees, blood vessels etc all have self-similar

patterns with just the right amount of unpredictable
variation. These patterns are called fractals.

The Mandelbrot fractals appear natural, organic
and even beautiful because they too sit at that fine
line between order and chaos, having structures
that have self-similar patterns but infused with just
enough variation – and parts of these fractals do
look like plants, lightning or natural coastlines.

CODING MANDELBROT & PYTHON

www.linuxvoice.com

PRO TIP
In Python, like many
programming languages,
the = equals sign means
“is set to”. So x=5 means
x is set to 5 until, and
if, it is updated later.
This is different from
the mathematical or
logical equivalence,
which can confuse new
programmers.

98

on their own if you define them sufficiently well, and
allow you to write shorter more elegant code. Why
shorter code? Because invoking a function by its
name many times is better than writing out all the
function code many times. (By sufficiently well
defined we mean being clear about what kinds of
input a function expects, and what kind of output it
produces. Some functions will only take numbers as
input, so you can’t supply it with text.)

Let’s look at a simple function and play with it. Enter
the following code and run it.
function that takes 2 numbers as input

and outputs their average
def avg(x,y):

print “first input is”, x
print “second input is”, y
a = (x + y) / 2.0
print “average is”, a
return a

The first two lines beginning with # are ignored by
Python, but we use them to add comments for future
readers. The next bit, def avg(x,y), tells Python we are
about to define a new reusable function. That’s the def
keyword. The avg part is the name we’ve given it. It
could have been called “banana” or “pluto” but it
makes sense to use names that remind us what the
function actually does. The bits in brackets (x,y) tells
Python that this function takes two inputs, to be called
x and y inside the definition of the function.

Now that we’ve signalled to Python that we’re about
to define a function, we need to actually tell it what the
function is to do. This definition of the function is
indented under def. The first and second numbers, x
and y, which the function receives when it is invoked
are printed. The next bit calculates (x+y)/2.0 and
assigns the value to the variable named a, before it is
printed. The last statement says return a. This is the
end of the function and tells Python what to return
back to whoever invoked it.

When we ran this code, it didn’t seem to do
anything. There were no numbers produced. That’s
because all we’ve done is define the function; we
haven’t used it yet. What has actually happened is that
Python has noted this function and will keep it ready
for when we want to use it.

In the next cell enter avg(2,4) to invoke this function
with the inputs 2 and 4. The output should be what we
expect, with the function printing a statement about
the two input values and the average it calculated. The
following shows the function definition and the results
of calling it with avg(2,4) and also bigger values (200,

Explore fractals in a web browser

You can explore the Mandelbrot fractal without installing any
software at all. The following two are implemented entirely in
JavaScript, so you only need a modern browser to explore the
fractals. Have a go!

The explorer at http://davidbau.com/mandelbrot enables
you to progressively click on points to cretae a new closer

image. You can then point at a new point in the closer view, or
go back and pick a new point to explore from.

The explorer at http://mandelbrot-set.com requires you
to use your pointer to select a rectangle to zoom into. The
level of detail calculated rapidly is impressive. You can select
different colour schemes with the options menu.

The simple folk of the 90s would be awed and terrified to see the Mandelbrot set calculated in a browser.

The amazing thing is
that all this detail and
variety emerges from the
behaviour of a very simple
mathematical function;
z2+c.

MANDELBROT & PYTHON CODING

www.linuxvoice.com

PRO TIP
Remember that in
Python, indents have
meaning. Instructions
that are subservient to
another are indented.
This includes function
definitions and the
contents of loops. An
errant space or tab can
cause hard-to-spot errors.

PRO TIP
Experiment with the
imshow() function
by trying different
options explained in its
documentation at
http://bit.ly/1lu1mkB.

99

301). Experiment with your own inputs.
You may have noticed that the function code which

calculates the average divides the sum of the two
inputs by “2.0” and not just “2”. This is because “2” is
an integer and so Python will round the result to an
integer as well, which we don’t want here.

Arrays
Arrays are just tables of values. You refer to particular
cells with the row and column number, just like you
would with cells in a spreadsheet.

Enter and run the following code.
a = zeros([3,2])
print a

This creates an array of shape 3 by 2, with all the
cells set to the value zero and assigns the whole thing
to a variable named a. Printing a shows the array full
of zeros in what looks like a table with three rows and
two columns.

Now let’s modify the contents of this array. The
following code shows how you can refer to specific
cells to overwrite them with new values. It’s just like
referring to spreadsheet cells or street map grid
references.
a[0,0] = 1
a[0,1] = 2
a[1,0] = 9
a[2,1] = 12
print a

The first line updates the cell at row zero and
column zero with the value 1, overwriting whatever
was there before. The other lines are similar updates,
with a final printout.

Now that we know how to set the value of cells in
an array, how do we look them up without printing out
the entire array? We’ve been doing it already. We
simply use the expressions like a[1,2] or a[2,1] to refer
to the content of these cells. The code shows us

doing just this.
print a[0,1]
v = a[1,0]
print v

Remember that the column and row numbering
starts from 0 and not 1, so the top-left is at [0,0] not
[1,1]. This also means that the bottom-right is at [2,1]
not [3,2].

Plotting arrays
Visualising arrays graphically is sometimes more
insightful than looking at large tables of numbers. We
can think of them as flat two-dimensional surfaces,
coloured according to the value at each cell in the
array. Let’s plot the small 3 x 2 array we created above:
imshow(a, interpolation=”nearest”)

The instruction to create a plot is imshow(), and the
first parameter is the array we want to plot. That last
bit, interpolation, is there to tell Python not to try to
blend the colours to make the plot look smoother,
which it does by default. The output is shown in the
image below.

As a teaser of things to come, the following short
code will plot different images every time you run it.
See if you can work out how it works using the online
Python documentation.
import numpy as np
figsize(5,5)
imshow(np.random.rand(10,10), interpolation=”lanczos”)

To really appreciate the Mandelbrot fractal we need
to experience for ourselves the unexpected behaviour
of very simple mathematical functions that lead to

The array cells which have the same value also have the
same colour. When we plot the Mandelbrot set, we’ll be
using this very same imshow instruction.

An example of the images
produced by the code
teaser, below. Can you
figure out how it works?

CODING MANDELBROT & PYTHON

www.linuxvoice.com100

its intricate patterns. You don’t need to be an expert
in mathematics to follow and appreciate the same
surprise felt by those researchers who first pictured
the Mandelbrot set in the late 1970s.

Iteration
You can imagine a mathematical function as a
machine that does some work. Its job is to take
numbers in one end, the input, and spit out a new
number out the other end, the output. What happens
if we feed the output of one of these functions back
into it again as the input?

Let’s try it with the function “divide by 3” and starting
value of 9. We get the sequence 9, 3, 1, , … You can
see the numbers getting ever smaller, and in fact
they’d never get to zero.

Iteration simply means doing the same thing again
and again to produce a series of outputs. If the values
keep growing larger forever, like those from the
“multiply by 2” function, we say the values diverge. If
they approach a finite value, like zero, like the “divide
by 3” function, we say the values converge.

Starting conditions
Some functions behave differently depending on their
starting value – in these cases, we say they are
sensitive to initial conditions. Consider the function
“square it” which simply takes an input and multiplies
it by itself. If the starting value is greater than 1, the
successive outputs keep growing larger. If the seed
value is smaller than 1, the values keep getting
smaller. A seed value of exactly 1 stays the same, and
separates the two domains of divergence and
convergence. This idea of domains of different
behaviour is important for the Mandelbrot fractal
because that is exactly what it is showing – regions of
divergence and convergence.

Other kinds of behaviour were discovered only
recently in the long history of mathematics. The
Logistic Map is a function rx(1-x) that was developed
by scientists trying to model population growth. The
behaviour is very sensitive to the starting value and

parameter r.
For some seed values and parameters r, the

function behaves like a divergent or a convergent
function. But for some, such as x=0.2 and r=3, the
function seems to oscillate. This is certainly
unexpected behaviour!

What’s more, for some other values like x=0.2 and
r=4 the behaviour breaks down into something
unrecognisable, apparently random. This is known as
chaos. Not only is this behaviour surprising from such
a simple function, it was only really appreciated in the
last 100 years or so of mathematics, which itself goes
back thousands of years.

We’re going to see if we can feed our functions a
new kind of number called a complex number. You
may remember these from school, but if not, we’ll
explain them here.

Complex numbers have two parts. They are
two-dimensional, and so can be used to refer to points
in a flat plane just like grid coordinates. These two
parts just happen to be called the real and imaginary
parts. We can add and subtract these numbers very
easily by combining the real and imaginary parts
separately. For example 1+2i added to 3+4i is 4+6i (4
is the real part and 6i is the imaginary part).

Multiplying complex numbers is just like school
algebra. The brackets are expanded and similar terms
are recombined, but there is one special rule for
complex numbers: any i2 is replaced by -1. For
example (2+3i)*(1+4i) is 2 + 8i + i3 + 12i2 which
simplifies to (-10+11i).

Python can work with complex numbers out of the
box. We use the form complex(a,b) to tell Python we
mean a+ib where a is the real part and b is the
imaginary part of the complex number. Try the
following in an IPython notebook.
assign the complex number (2+3i) to c
c = complex(2,3)
print c

print c multiplied by (1 - 4i)
print c * complex(1,-4)

print c squared
print c*c

The behaviours we saw earlier, including oscillation
and chaos, also occur for functions working on
complex numbers, except they take place in two
dimensions. The successive values from a function
are called orbits. The plot below-left shows successive
values for the simple function z2+c with z starting at 0
and c=0.4+0.4i. You can see that after an initial
circling, the values suddenly diverge – not the
behaviour we were used to at school with less
interesting functions!

Mandelbrot fractal recipe
The Mandelbrot set is just a two-dimensional atlas
coloured to show which regions of its world, the
two-dimensional complex plane, diverge or converge

PRO TIP
It’s good practice to to
design your functions
to always return the
same result for the
same set of inputs.
When your programs
grow in complexity, this
is a guarantee that will
help keep your code
understandable and aid
debugging.

Orbit plot showing
successive values of z^2+c
when c=0.4+0.4i. You can
see an initial circling then
a sudden divergence.

iterate function “z 2+c”, start value z-0+0i,
c=0.4+0.41, orbit plot

>

real

im
ag

in
ar

y

5

2.5

0

-2.5

-5
-5 -2.5 0 2.5 5

MANDELBROT & PYTHON CODING

www.linuxvoice.com 101

when the amazingly simple function z2+c is applied
iteratively. Here z starts at 0, and c is the complex
number representing the chosen point on the complex
plane. If a chosen point diverges and gets bigger and
bigger it is considered outside the Mandelbrot set. We
could colour all such points one colour, but it is
common to chose a colour according to how rapid the
divergence is. The points inside the set, those which
don’t diverge, are usually coloured black.

It turns out, to many people’s surprise, that the
boundary between the two is not a boring shape like a
circle but is incredibly detailed and intricate, and in
fact beautiful – it is the famous Mandelbrot fractal!

Mandelbrot set in Python
We’ll build up a Python program to calculate and plot
a Mandelbrot fractal in easy to understand pieces.

Let’s start at the core of the Mandelbrot calculation.
For each point being tested on a selected rectangle of
the complex plane, the function z2+c is repeatedly
iterated the resulting values may diverge rapidly. The
point is coloured according to how quickly that
function diverges. This means the Python function we
want to write returns the number of iterations it takes
to diverge beyond a threshold magnitude. The
function still needs to calculate successive values of
z2+c, it just doesn’t have to return them. So the start
and end of the core calculating Python function, which
we’ll call mandel(), looks like the following.
def mandel(c):

..

..
return iterations

What if the point doesn’t diverge? We can define the
maximum number of iterations the function is to be
applied before giving up. We can pass it as a
parameter to the core mandel() function. The function
would then look something like mandel(c, maxiter).
Why would we need to change it? Well, as you explore
the Mandelbrot fractal’s finer detail, you need more
iterations to establish whether very close points
behave differently or not.

We now have a mandel() function that takes the
test point c, and the maximum number of iterations
as its parameters:
def mandel(c, maxiter):
 z = complex(0,0)

 for iteration in xrange(maxiter):
 …
 …
 …
 pass

 return iteration
We set the starting value of z to be zero, or more

precisely (0+0i). The for .. code loop, which iterates a
maximum of maxiter times, keeps count in the
variable named iteration. The end of the function is
still returning the iteration count, whether that reaches

the maximum maxiter, or is stopped sooner by a
magnitude threshold test. What’s left is to fill in the
code describing the iterated function z2+c and then
check to see if the threshold has been breached.
These are fairly easy, so let’s write them out and
explain them.
def mandel(c, maxiter):
 z = complex(0,0)

 for iteration in xrange(maxiter):
 z = (z*z) + c

 if abs(z) > 4:
 break
 pass

 pass

 return iteration
Here we’ve added the z = (z * z) + c instructions,

which calculates the next value of z based on the
current value and the chosen c. We then check to see
if the magnitude, or absolute value denoted abs() in
Python, of c is greater than 4, and if it is, the instruction
break simply breaks out of the for loop. Once this
happens there are no more instructions after the loop,
and so the mandel(c,maxiter) function returns the

PRO TIP
There are several kinds
of convergence you’ll
find if you experiment
with these and similar
functions. Successive
values will get closer
to, but never reach,
zero or a finite value.
Alternatively, they will
fluctuate above and
below a value as they get
ever closer to it. In some
cases they might orbit
about a finite number of
different attractors, that
is, multiple points which
seem to pull them closer.

PRO TIP
Complex numbers really
aren’t complex. The term
is an accident of history,
and sadly puts some
people off them. If they
were called composite
numbers, that would
reflect the fact that
they are made up of two
independent parts.

Resources

If you’d like a fuller explanation of the mathematics and
Python discussed in this series, you’ll find the Make Your
Own Mandelbrot ebook (Amazon and Google) takes a
slower journey with more examples and discussion. All the
source code can be found at the blog.

 Source code http://makeyourownmandelbrot.blogspot.
co.uk/2014/04/sharing-code.html

 IPython http://ipython.org/install.html
 Wakari.io www.wakari.io
 XaoS http://matek.hu/xaos/doku.php
 Blog http://makeyourownmandelbrot.blogspot.co.uk
 Amazon Kindle ebook www.amazon.co.uk/dp/
B00JFIEC2A

Some examples of
functions: the square
functions takes an input of
4 and squares it, producing
the resulting answer 16.

10 3-7

3 -3
multiply

by -1

4 16square

CODING MANDELBROT & PYTHON

www.linuxvoice.com102

value of iteration. If the point doesn’t diverge, then
abs(z) is never more than 4, so the for loop simply
keeps running until the count reaches the maximum
iterations, and it is this maximum that is then finally
returned by the mandel(c, maxiter) function.

The atlas
We now need to define in Python which part of this

complex plane we
are interested in. We
also need to divide
up this section into
regularly spaced
points, ultimately
representing pixels in
an image.

Python has a function linspace() which divides an
interval into evenly spaced points. Let’s imagine we
want a rectangle with bottom-left at (-2,-2) and the
top-right at (4,2). This has a horizontal length of 6, and
a vertical height of 4. Let’s divide the horizontal length
into 12 sections, and the vertical into 8. The following
Python code shows how you can use the familiar
Python loops over each element of linspace lists to
create the coordinates for each test point within this
rectangle.

x_list = linspace(-2.0, 4.0, 13)
y_list = linspace(-2.0, 2.0, 9)
for x in x_list:
 for y in y_list:
 print x,y
 pass
 pass

Next we need to find a way of associating these
points with the pixels in an array of colour values that
could be plotted using the imshow() function we used
earlier. The complex plane region is just a list of points,
represented by complex numbers, and these don’t
have a colour associated with them to plot. We need
to give the imshow() plotting function something that
contains colour information. Also, imshow() expects
to plot a two-dimensional array where the contents of
a cell represent the colour to be plotted, not a long list
of complex numbers like the ones we created earlier.

Given that the rows and columns of the plotted
array need to increment in whole units, we can simply
place each of the evenly spaced points between the
bottom-left and top-right into the array. So if the points
were 0.5 units apart on the complex plane, they would
be 1 unit apart in the array.

Let’s now define the complex plane region. Enter
and run the following code. It makes sense to place
this at the top of your IPython notebook because it
sets out up front which region you are interested in.
Use the button marked as ‘Insert Cell Above’ to create
a new cell at the top.
set the location and size of the complex plane rectangle
xvalues = linspace(-2.25, 0.75, 1000)
yvalues = linspace(-1.5, 1.5, 1000)

size of these lists of x and y values
xlen = len(xvalues)
ylen = len(yvalues)

The first instruction creates a list of 1000 points
evenly placed between -2.25 and 0.75, inclusive.
These will be the horizontal divisions of the rectangle,
and we’ll call the list xvalues. Similarly, yvalues is the
list of 1000 evenly spaced points between -1.5 and
1.5. The last two lines simply take the length of the
lists and assign them to variables.

PRO TIP
You can find a visual
representation and
gentler explanation of the
algorithm to calculate
and plot the Mandelbrot
fractal at
http://bit.ly/1qK78e3

Arithmetic with complex numbers

The following table summarises how to add, subtract and multiply complex numbers.

After each iteration of the
‘multiply by 2’ function,
the results get ever further
from each other – this is
divergence.

iterate function “multiply by 2”, start value 2

va
lu

e

2400

1800

1200

600

0
0 2 4 6 8

iteration

Add the two complex numbers (a + bi) and (c + di)

Subtract the complex number (c + di) from (a + bi)

Multiply the two complex numbers (a + bi) * (c + di)

Operation How to do it

(a + bi) + (c + di) = (a+c) + (b+d)i
Add the real and imaginary parts independently.

(a + bi) - (c + di) = (a-c) + (b-d)i
Subtract the real and imaginary parts independently.

(a + bi) * (c + di) = (ac + adi + bci + dbi2) = (ac-bd) + (ad+bc)i
Expand out the terms and apply the special rule that i2 is -1.
Then collect real and imaginary parts to make a neat answer.

“We want to colour each region
according to its convergence
or divergence behaviour.”

MANDELBROT & PYTHON CODING

www.linuxvoice.com 103

The following code creates the image array of
colour values of size xlen by ylen. We’ve called it atlas
because we want to colour each region according to
its convergence or divergence behaviour.
atlas = empty((xlen,ylen))

We’re almost there! All that remains is to fill this
array with colour values and plot it using imshow().
The following code uses loops to fill it with the
returned values from the mandel() function.
for ix in xrange(xlen):
 for iy in xrange(ylen):

 cx = xvalues[ix]
 cy = yvalues[iy]
 c = complex(cx, cy)

 atlas[ix,iy] = mandel(c,40)

 pass
 pass
You’ll recognise that this code is simply two loops, one
inside the other. The loops count through the rows
and columns of the atlas array using variables ix and
iy. These counts refer to the contents of the array,
which are also counted from 0 to xlen-1, and not 1 to
xlen. You may have noticed that we use xrange
instead of range. range would work, but for very large
lists xrange is more efficient because it doesn’t
actually create a list, but gives you the contents as
you ask for them.

These two loops enable us to refer to every cell of
the array using atlas[ix,iy]. The code inside the loops
uses the counts ix and iy to look up the actual
complex number to be tested by the mandel()
function. The real and imaginary parts were in the
xvalues and yvalues lists we created earlier, and can
be dug out using xvalues[ix] and yvalues[iy].

The last part inside the loops is updating the
contents of the array with the return value from the
mandel() function.

That’s it, the hard work is done! Now let’s see the
results. In a new cell, enter the following code.
figsize(18,18)
imshow(atlas.T, interpolation=”nearest”)

The first line sets the size of the plot to 18 by 18
because the default is too small. The imshow
instruction plots the array. We also refer to atlas with
a .T appended to it because otherwise the array is
plotted on its side compared to what we want to see.

Run the code and you’ll see the Mandelbrot set.
You can zoom into parts of the Mandelbrot set by

changing the bottom-left and top-right points of the
complex plane region. We simply change the code
that sets the xvalues and yvalues. For example, using
the rectangle from earlier in this guide with the values
(-0.22 - 0.70i) bottom-left and (-0.21 -0.69i) as
top-right means setting the following xvalues and
yvalues as follows:
set the location and size of the atlas rectangle
xvalues = linspace(-0.22, -0.21, 1000)
yvalues = linspace(-0.70, -0.69, 1000)

The resulting image was quite undefined because
we set too low a value for maximum iterations.
Change it from 40 to 120 as follows:
atlas[ix,iy] = mandel(c,120)

The result is a more detailed image, as shown
below-left. It’s really quite beautiful!

The complete Python code we’ve built up to plot our
own Mandelbrot fractals is available for you to look
over at http://makeyourownmandelbrot.blogspot.
co.uk/2014/04/sharing-code.html. I’ve added
comments to help remind you what each code
section does.

Next month we’ll look at the Julia fractals, which are
intimately related to the Mandelbrot fractals. They’re
even more beautiful in my opinion! We’ll also extend
our 2D fractals into interactive alien 3D landscapes
you’ll be able to explore.

PRO TIP
The code for the full
programs to calculate and
plot the Mandelbrot and
Julia fractals is online at
http://bit.ly/1qpnlsE.

PRO TIP
Don’t forget you can
explore the Mandelbrot
and other fractals using
the interactive XaoS open
source software at http://
bit.ly/1vLdz52 or through
a web browser http://bit.
ly/1lbXYL1.

Tariq spends his time grappling with enterprise IT problems,
informed by two decades of working with open technology.

In the divide by three
function, the result
trends towards, but never
reaches, zero.

iterate function “divide by 3”, start value 10

va
lu

e

10

7.5

5

2.5

0
0 2 4 6 8

iteration

It looks different from the image on the first page of this
tutorial, but this is actually just a magnified section.

