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WHY DO THIS?
•  Create hugely complex 

results from a simple 
equation.

•  Turn this into pretty 
graphs!

The image below depicts the famous
Mandelbrot set. You may have seen it on 
posters, music videos or demonstrations of 

computer power – back in the 1990s it took hours to 
plot it using home computers. Despite its organic 
intricate appearance it is in fact the result of extremely 
simple mathematics. 

The maths hasn’t changed since the 1990s, but 
computing power has come on in leaps and bounds, 
so the psychedelic beauty of the Mandelbrot set can 
be ours to play with. We’ll be using the Python 
programming language because it’s popular, easy to 
learn, and has well established numerical and plotting 
extensions. It’s no accident that Python is the tool of 
choice in the scientific community, as well as 
powering some of the world’s largest infrastructures. 

As an interpreted, rather than compiled language, 
Python gives immediate feedback. We’re going to take 
this interactivity one step further by using IPython, 
which is Python packaged with an interactive web 
interface. You can just type instructions and get 
results straight away. You avoid having to edit source 

code files and using shells to execute the programs.
You can also share your web-based “notebooks” by 
exporting them, or sharing them online. 

There are pre-packaged distributions of IPython 
including the numerical and graphical extensions, so 
you don’t have to worry about installing and 
configuring the right versions and their many 
dependencies. Even better, because IPython is used 
purely through a web browser, you can use one of 
several online services offering IPython in the cloud. 
You don’t have to install any software at all, and you 
can work on your code and demonstrate the results 
from any internet-connected device that supports a 
modern browser. 

The code in this article series was tested with the 
online service from wakari.io, which offers free trial 
accounts, and the locally installed IPython Anaconda 
free distribution from continuum.io. 

Whether you select an online service or install your 
own IPython distribution, check to see if it works by 
firing it up and clicking on New Notebook. Type 2*3 
into it and click the Run button, which looks like an 
audio play selector. If it responds with ‘6’, great – you 
have a working IPython environment!

Beginning Python
Let’s now learn just enough Python to make our own
Mandelbrot fractal. Fire up IPython and open a new 
notebook. In the next ready cell, labelled In [ ], type the 
following code and click Play (or press Ctrl+Enter).
print “Hello World!”

You should get a response that simply prints the
phrase “Hello World!” You should see that issuing the 
second instruction didn’t remove the previous cell with 
its instruction and output answer. This is useful when 
you’re slowly building up a solution of several parts.

The following code introduces the key idea of 
variables. Enter and run it in a new cell. If there is no 
new empty cell, click the button with the downward 
pointing arrow labelled ‘Insert Cell Below’, not to be 
confused with the one labelled “Move Cell Down”.
x = 10
print x
print x+5
print z

The first line, x = 10, looks like a mathematical
statement that says x is 10. In Python this means that 
x is set to 10, that is, the value 10 is placed in an 
virtual box called x. That 10 stays there until further 

PYTHON: MAKE YOUR OWN 
MANDELBROT SET
With a smattering of Python and a bit of clever maths you too can 
create a bit of beautiful chaos inside your Linux box.

 TUTORIAL
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The following images 
are closeups of parts of 
this same fractal. The 
Mandelbrot set is in fact 
infinitely detailed, and 
contains a wide variety of 
patterns. 
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PRO TIP
Explore the Mandelbrot 
fractal using the 
interactive XaoS open 
source software at  
http://bit.ly/1vLdz52 or 
through a web browser 
http://bit.ly/1lbXYL1.
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notice. We shouldn’t be surprised that print x prints
the value of x, which is 10. Why doesn’t it just print x? 
Python will evaluate whatever it can, and x can be 
evaluated to the value 10, so it prints that. The next 
line, print x+5 evaluates x+5, which is 10+5 or 15, so 
we expect it to print 15. 

What happens with the line print z when we haven’t 
assigned a value to it like we have with x? We get an 
error message telling us about the error of our ways, 
trying to be helpful as possible so we can fix it. 

Automating lots of work
Computers are great for doing similar tasks many
times – they don’t mind and they’re very quick 
compared with humans with calculators. Let’s see if 
we can get a computer to print the first 10 squared 
numbers, starting with 0 squared, 1 squared, then 2 
squared and so on. We expect to see a printout of 
something like 0, 1, 4, 9, 16, 25, and so on. Issue the 
following code into the next ready cell and run it. 
range(10)

You should get a list of 10 numbers, from 0 up to 9.
This is great because we got the computer to do the 
work to create the list – we didn’t have to do it 
ourselves. 

A common way to get computers to do things 
repeatedly is by using loops. The word loop does give 
you the right impression of something going round 
and round potentially endlessly. Rather than define a 
loop, it’s easiest to see a simple one. Enter and run 
following code in a new cell.
for n in range(10):

print n
pass

print “done”
There are three new things going on here. The first

line has the range(10) command that we saw before, 
which creates a list of numbers from 0 to 9. The for n 

in is the bit that creates a loop, and here it does
something for every number in the list, and keeps 
count by assigning the current value to the variable n. 
We saw variables earlier, and this is just like assigning 
n=0 during the first pass of the loop, then n=1, then 
n=2, until n=9, the last item in the list. 

The next line print n prints the value of n, just as 
before. We expect all the numbers in the list to be 
printed. But notice the indent before print n. This is 
important in Python as indents are used meaningfully 
to show which instructions are subservient to others, 
in this case, the loop created by for n in .... The loop 
ends when the code stops being indented. Here, we’ve 
used a pass instruction to highlight the end of the loop 
(pass is superfluous, and Python will ignore it but it 
helps the interpreter exit a code block. You can remove 
it if you want). This means we only expect done to be 
printed once, and not 10 times. 

It should be clear now that we can print the squares 
by printing n*n. In fact we can make the output more 
helpful with phrases like “The square of 3 is 9”. The 
following code shows this change inside the loop. 
Note how the variables are not inside quotes and are 
therefore evaluated.
for n in range(10):

print “The square of”, n, “is”, n*n
pass

print “done”
This is already quite powerful. We can get the

computer to do a lot of work very quickly. We could 
easily make the number of loop iterations much larger 
by using range(100) or even range(100000) if we 
wanted. Try it!

Functions
Python makes it easy to create reusable computer
instructions. Like mathematical functions, these 
reusable snippets of code, also called functions, stand 

Fractals

Before we dive in and start coding, let’s take a 
step back and consider again some of the patterns 
we find in nature or create ourselves. Look at the 
following three images.

The first set of shapes is very regular. They’re 
what most people would consider mathematical 
shapes, but there isn’t enough interesting detail in 
them to hold our attention for long. The last image 

is entirely random noise – there isn’t a lack of 
detail, but now there isn’t enough structure in the 
image to keep us interested. The cauliflower has 
repeated patterns at different scales. These 
patterns also have just the right amount of variation 
to keep us interested. This is a common theme 
throughout nature, where clouds, mountains, rivers, 
trees, blood vessels etc all have self-similar 

patterns with just the right amount of unpredictable 
variation. These patterns are called fractals. 

The Mandelbrot fractals appear natural, organic 
and even beautiful because they too sit at that fine 
line between order and chaos, having structures 
that have self-similar patterns but infused with just 
enough variation – and parts of these fractals do 
look like plants, lightning or natural coastlines.
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PRO TIP
In Python, like many 
programming languages, 
the = equals sign means 
“is set to”. So x=5 means 
x is set to 5 until, and 
if, it is updated later. 
This is different from 
the mathematical or 
logical equivalence, 
which can confuse new 
programmers. 
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on their own if you define them sufficiently well, and
allow you to write shorter more elegant code. Why 
shorter code? Because invoking a function by its 
name many times is better than writing out all the 
function code many times. (By sufficiently well 
defined we mean being clear about what kinds of 
input a function expects, and what kind of output it 
produces. Some functions will only take numbers as 
input, so you can’t supply it with text.)

Let’s look at a simple function and play with it. Enter 
the following code and run it.
# function that takes 2 numbers as input

# and outputs their average
def avg(x,y):

print “first input is”, x
print “second input is”, y 
a = (x + y) / 2.0
print “average is”, a
return a

The first two lines beginning with # are ignored by
Python, but we use them to add comments for future 
readers. The next bit, def avg(x,y), tells Python we are 
about to define a new reusable function. That’s the def 
keyword. The avg part is the name we’ve given it. It 
could have been called “banana” or “pluto” but it 
makes sense to use names that remind us what the 
function actually does. The bits in brackets (x,y) tells 
Python that this function takes two inputs, to be called 
x and y inside the definition of the function. 

Now that we’ve signalled to Python that we’re about 
to define a function, we need to actually tell it what the 
function is to do. This definition of the function is 
indented under def. The first and second numbers, x 
and y, which the function receives when it is invoked 
are printed. The next bit calculates (x+y)/2.0 and 
assigns the value to the variable named a, before it is 
printed. The last statement says return a. This is the 
end of the function and tells Python what to return 
back to whoever invoked it. 

When we ran this code, it didn’t seem to do 
anything. There were no numbers produced. That’s 
because all we’ve done is define the function; we 
haven’t used it yet. What has actually happened is that 
Python has noted this function and will keep it ready 
for when we want to use it.

In the next cell enter avg(2,4) to invoke this function 
with the inputs 2 and 4. The output should be what we 
expect, with the function printing a statement about 
the two input values and the average it calculated. The 
following shows the function definition and the results 
of calling it with avg(2,4) and also bigger values (200, 

Explore fractals in a web browser

You can explore the Mandelbrot fractal without installing any 
software at all. The following two are implemented entirely in 
JavaScript, so you only need a modern browser to explore the 
fractals. Have a go!

The explorer at http://davidbau.com/mandelbrot enables 
you to progressively click on points to cretae a new closer 

image. You can then point at a new point in the closer view, or 
go back and pick a new point to explore from. 

The explorer at http://mandelbrot-set.com requires you 
to use your pointer to select a rectangle to zoom into. The 
level of detail calculated rapidly is impressive. You can select 
different colour schemes with the options menu.

The simple folk of the 90s would be awed and terrified to see the Mandelbrot set calculated in a browser.

The amazing thing is 
that all this detail and 
variety emerges from the 
behaviour of a very simple 
mathematical function; 
z2+c.
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PRO TIP
Remember that in 
Python, indents have 
meaning. Instructions 
that are subservient to 
another are indented. 
This includes function 
definitions and the 
contents of loops. An 
errant space or tab can 
cause hard-to-spot errors.

PRO TIP
Experiment with the 
imshow() function 
by trying different 
options explained in its 
documentation at  
http://bit.ly/1lu1mkB.
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301). Experiment with your own inputs.
You may have noticed that the function code which 

calculates the average divides the sum of the two 
inputs by “2.0” and not just “2”. This is because “2” is 
an integer and so Python will round the result to an 
integer as well, which we don’t want here. 

Arrays
Arrays are just tables of values. You refer to particular
cells with the row and column number, just like you 
would with cells in a spreadsheet. 

Enter and run the following code.
a = zeros( [3,2] )
print a

This creates an array of shape 3 by 2, with all the
cells set to the value zero and assigns the whole thing 
to a variable named a. Printing a shows the array full 
of zeros in what looks like a table with three rows and 
two columns.

Now let’s modify the contents of this array. The 
following code shows how you can refer to specific 
cells to overwrite them with new values. It’s just like 
referring to spreadsheet cells or street map grid 
references. 
a[0,0] = 1
a[0,1] = 2
a[1,0] = 9
a[2,1] = 12
print a

The first line updates the cell at row zero and
column zero with the value 1, overwriting whatever 
was there before. The other lines are similar updates, 
with a final printout. 

Now that we know how to set the value of cells in 
an array, how do we look them up without printing out 
the entire array? We’ve been doing it already. We 
simply use the expressions like a[1,2] or a[2,1] to refer 
to the content of these cells. The code shows us 

doing just this.
print a[0,1]
v = a[1,0]
print v

Remember that the column and row numbering
starts from 0 and not 1, so the top-left is at [0,0] not 
[1,1]. This also means that the bottom-right is at [2,1] 
not [3,2]. 

Plotting arrays
Visualising arrays graphically is sometimes more
insightful than looking at large tables of numbers. We 
can think of them as flat two-dimensional surfaces, 
coloured according to the value at each cell in the 
array. Let’s plot the small 3 x 2 array we created above:
imshow(a, interpolation=”nearest”)

The instruction to create a plot is imshow(), and the
first parameter is the array we want to plot. That last 
bit, interpolation, is there to tell Python not to try to 
blend the colours to make the plot look smoother, 
which it does by default. The output is shown in the 
image below.

As a teaser of things to come, the following short 
code will plot different images every time you run it. 
See if you can work out how it works using the online 
Python documentation.
import numpy as np
figsize(5,5)
imshow(np.random.rand(10,10), interpolation=”lanczos”)

To really appreciate the Mandelbrot fractal we need
to experience for ourselves the unexpected behaviour 
of very simple mathematical functions that lead to 

The array cells which have the same value also have the 
same colour. When we plot the Mandelbrot set, we’ll be 
using this very same imshow instruction.

An example of the images 
produced by the code 
teaser, below. Can you 
figure out how it works?
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its intricate patterns. You don’t need to be an expert
in mathematics to follow and appreciate the same 
surprise felt by those researchers who first pictured 
the Mandelbrot set in the late 1970s.

Iteration
You can imagine a mathematical function as a
machine that does some work. Its job is to take 
numbers in one end, the input, and spit out a new 
number out the other end, the output. What happens 
if we feed the output of one of these functions back 
into it again as the input?

Let’s try it with the function “divide by 3” and starting 
value of 9. We get the sequence 9, 3, 1, , … You can 
see the numbers getting ever smaller, and in fact 
they’d never get to zero. 

Iteration simply means doing the same thing again 
and again to produce a series of outputs. If the values 
keep growing larger forever, like those from the 
“multiply by 2” function, we say the values diverge. If 
they approach a finite value, like zero, like the “divide 
by 3” function, we say the values converge.

Starting conditions
Some functions behave differently depending on their
starting value – in these cases, we say they are 
sensitive to initial conditions. Consider the function 
“square it” which simply takes an input and multiplies 
it by itself. If the starting value is greater than 1, the 
successive outputs keep growing larger. If the seed 
value is smaller than 1, the values keep getting 
smaller. A seed value of exactly 1 stays the same, and 
separates the two domains of divergence and 
convergence. This idea of domains of different 
behaviour is important for the Mandelbrot fractal 
because that is exactly what it is showing – regions of 
divergence and convergence.

Other kinds of behaviour were discovered only 
recently in the long history of mathematics. The 
Logistic Map is a function rx(1-x) that was developed 
by scientists trying to model population growth. The 
behaviour is very sensitive to the starting value and 

parameter r.
For some seed values and parameters r, the 

function behaves like a divergent or a convergent 
function. But for some, such as x=0.2 and r=3, the 
function seems to oscillate. This is certainly 
unexpected behaviour!

What’s more, for some other values like x=0.2 and 
r=4 the behaviour breaks down into something 
unrecognisable, apparently random. This is known as 
chaos. Not only is this behaviour surprising from such 
a simple function, it was only really appreciated in the 
last 100 years or so of mathematics, which itself goes 
back thousands of years.

We’re going to see if we can feed our functions a 
new kind of number called a complex number. You 
may remember these from school, but if not, we’ll 
explain them here.

Complex numbers have two parts. They are 
two-dimensional, and so can be used to refer to points 
in a flat plane just like grid coordinates. These two 
parts just happen to be called the real and imaginary 
parts. We can add and subtract these numbers very 
easily by combining the real and imaginary parts 
separately. For example 1+2i added to 3+4i is 4+6i (4 
is the real part and 6i is the imaginary part). 

Multiplying complex numbers is just like school 
algebra. The brackets are expanded and similar terms 
are recombined, but there is one special rule for 
complex numbers: any i2 is replaced by -1. For 
example (2+3i)*(1+4i) is 2 + 8i + i3 + 12i2 which 
simplifies to (-10+11i). 

Python can work with complex numbers out of the 
box. We use the form complex(a,b) to tell Python we 
mean a+ib where a is the real part and b is the 
imaginary part of the complex number. Try the 
following in an IPython notebook.
# assign the complex number (2+3i) to c
c = complex(2,3)
print c

# print c multiplied by (1 - 4i)
print c * complex(1,-4)

# print c squared
print c*c

The behaviours we saw earlier, including oscillation
and chaos, also occur for functions working on 
complex numbers, except they take place in two 
dimensions. The successive values from a function 
are called orbits. The plot below-left shows successive 
values for the simple function z2+c with z starting at 0 
and c=0.4+0.4i. You can see that after an initial 
circling, the values suddenly diverge – not the 
behaviour we were used to at school with less 
interesting functions!

Mandelbrot fractal recipe
The Mandelbrot set is just a two-dimensional atlas
coloured to show which regions of its world, the 
two-dimensional complex plane, diverge or converge 

PRO TIP
It’s good practice to to 
design your functions 
to always return the 
same result for the 
same set of inputs. 
When your programs 
grow in complexity, this 
is a guarantee that will 
help keep your code 
understandable and aid 
debugging. 

Orbit plot showing 
successive values of z^2+c 
when c=0.4+0.4i. You can 
see an initial circling then 
a sudden divergence.

iterate function “z  2+c”, start value z-0+0i,
c=0.4+0.41, orbit plot
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when the amazingly simple function z2+c is applied
iteratively. Here z starts at 0, and c is the complex 
number representing the chosen point on the complex 
plane. If a chosen point diverges and gets bigger and 
bigger it is considered outside the Mandelbrot set. We 
could colour all such points one colour, but it is 
common to chose a colour according to how rapid the 
divergence is. The points inside the set, those which 
don’t diverge, are usually coloured black. 

It turns out, to many people’s surprise, that the 
boundary between the two is not a boring shape like a 
circle but is incredibly detailed and intricate, and in 
fact beautiful – it is the famous Mandelbrot fractal!

Mandelbrot set in Python
We’ll build up a Python program to calculate and plot
a Mandelbrot fractal in easy to understand pieces.

Let’s start at the core of the Mandelbrot calculation. 
For each point being tested on a selected rectangle of 
the complex plane, the function z2+c is repeatedly 
iterated the resulting values may diverge rapidly. The 
point is coloured according to how quickly that 
function diverges. This means the Python function we 
want to write returns the number of iterations it takes 
to diverge beyond a threshold magnitude. The 
function still needs to calculate successive values of 
z2+c, it just doesn’t have to return them. So the start 
and end of the core calculating Python function, which 
we’ll call mandel(), looks like the following.
def mandel(c):

..

..
return iterations

What if the point doesn’t diverge? We can define the
maximum number of iterations the function is to be 
applied before giving up. We can pass it as a 
parameter to the core mandel() function. The function 
would then look something like mandel(c, maxiter). 
Why would we need to change it? Well, as you explore 
the Mandelbrot fractal’s finer detail, you need more 
iterations to establish whether very close points 
behave differently or not. 

We now have a mandel() function that takes the 
test point c, and the maximum number of iterations 
as its parameters:
def mandel(c, maxiter):
    z = complex(0,0)

    for iteration in xrange(maxiter):
        …
        …
        …
        pass

    return iteration
We set the starting value of z to be zero, or more

precisely (0+0i). The for .. code loop, which iterates a 
maximum of maxiter times, keeps count in the 
variable named iteration. The end of the function is 
still returning the iteration count, whether that reaches 

the maximum maxiter, or is stopped sooner by a
magnitude threshold test. What’s left is to fill in the 
code describing the iterated function z2+c and then 
check to see if the threshold has been breached. 
These are fairly easy, so let’s write them out and 
explain them.
def mandel(c, maxiter):
    z = complex(0,0)

    for iteration in xrange(maxiter):
        z = (z*z) + c

        if abs(z) > 4:
                break
                pass

        pass

    return iteration
Here we’ve added the z = (z * z) + c instructions,

which calculates the next value of z based on the 
current value and the chosen c. We then check to see 
if the magnitude, or absolute value denoted abs() in 
Python, of c is greater than 4, and if it is, the instruction 
break simply breaks out of the for loop. Once this 
happens there are no more instructions after the loop, 
and so the mandel(c,maxiter) function returns the 

PRO TIP
There are several kinds 
of convergence you’ll 
find if you experiment 
with these and similar 
functions. Successive 
values will get closer 
to, but never reach, 
zero or a finite value. 
Alternatively, they will 
fluctuate above and 
below a value as they get 
ever closer to it. In some 
cases they might orbit 
about a finite number of 
different attractors, that 
is, multiple points which 
seem to pull them closer.

PRO TIP
Complex numbers really 
aren’t complex. The term 
is an accident of history, 
and sadly puts some 
people off them. If they 
were called composite 
numbers, that would 
reflect the fact that 
they are made up of two 
independent parts.

Resources

If you’d like a fuller explanation of the mathematics and 
Python discussed in this series, you’ll find the Make Your 
Own Mandelbrot ebook (Amazon and Google) takes a 
slower journey with more examples and discussion. All the 
source code can be found at the blog.

  Source code http://makeyourownmandelbrot.blogspot.
co.uk/2014/04/sharing-code.html

  IPython http://ipython.org/install.html
  Wakari.io www.wakari.io
  XaoS http://matek.hu/xaos/doku.php
  Blog http://makeyourownmandelbrot.blogspot.co.uk
  Amazon Kindle ebook www.amazon.co.uk/dp/
B00JFIEC2A

Some examples of 
functions: the square 
functions takes an input of 
4 and squares it, producing 
the resulting answer 16.

10 3-7

3 -3
multiply

by -1

4 16square
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value of iteration. If the point doesn’t diverge, then
abs(z) is never more than 4, so the for loop simply 
keeps running until the count reaches the maximum 
iterations, and it is this maximum that is then finally 
returned by the mandel(c, maxiter) function.

The atlas
We now need to define in Python which part of this

complex plane we 
are interested in. We 
also need to divide 
up this section into 
regularly spaced 
points, ultimately 
representing pixels in 
an image.

Python has a function linspace() which divides an 
interval into evenly spaced points. Let’s imagine we 
want a rectangle with bottom-left at (-2,-2) and the 
top-right at (4,2). This has a horizontal length of 6, and 
a vertical height of 4. Let’s divide the horizontal length 
into 12 sections, and the vertical into 8. The following 
Python code shows how you can use the familiar 
Python loops over each element of linspace lists to 
create the coordinates for each test point within this 
rectangle.

x_list = linspace( -2.0, 4.0, 13)
y_list = linspace( -2.0, 2.0, 9)
for x in x_list:
    for y in y_list:
        print x,y
        pass
    pass

Next we need to find a way of associating these
points with the pixels in an array of colour values that 
could be plotted using the imshow() function we used 
earlier. The complex plane region is just a list of points, 
represented by complex numbers, and these don’t 
have a colour associated with them to plot. We need 
to give the imshow() plotting function something that 
contains colour information. Also, imshow() expects 
to plot a two-dimensional array where the contents of 
a cell represent the colour to be plotted, not a long list 
of complex numbers like the ones we created earlier. 

Given that the rows and columns of the plotted 
array need to increment in whole units, we can simply 
place each of the evenly spaced points between the 
bottom-left and top-right into the array. So if the points 
were 0.5 units apart on the complex plane, they would 
be 1 unit apart in the array. 

Let’s now define the complex plane region. Enter 
and run the following code. It makes sense to place 
this at the top of your IPython notebook because it 
sets out up front which region you are interested in. 
Use the button marked as ‘Insert Cell Above’ to create 
a new cell at the top.
# set the location and size of the complex plane rectangle
xvalues = linspace(-2.25, 0.75, 1000)
yvalues = linspace(-1.5, 1.5, 1000)

# size of these lists of x and y values
xlen = len(xvalues)
ylen = len(yvalues)

The first instruction creates a list of 1000 points
evenly placed between -2.25 and 0.75, inclusive. 
These will be the horizontal divisions of the rectangle, 
and we’ll call the list xvalues. Similarly, yvalues is the 
list of 1000 evenly spaced points between -1.5 and 
1.5. The last two lines simply take the length of the 
lists and assign them to variables. 

PRO TIP
You can find a visual 
representation and 
gentler explanation of the 
algorithm to calculate 
and plot the Mandelbrot 
fractal at  
http://bit.ly/1qK78e3

Arithmetic with complex numbers

The following table summarises how to add, subtract and multiply complex numbers.

After each iteration of the 
‘multiply by 2’ function, 
the results get ever further 
from each other – this is 
divergence.

iterate function “multiply by 2”, start value 2

va
lu

e

2400

1800

1200

600

0
0         2             4                     6      8

iteration

Add the two complex numbers (a + bi) and (c + di)

Subtract the complex number (c + di) from (a + bi)

Multiply the two complex numbers (a + bi) * (c + di)

Operation    How to do it

(a + bi) + (c + di) = (a+c) + (b+d)i  
Add the real and imaginary parts independently.

(a + bi) - (c + di) = (a-c) + (b-d)i  
Subtract the real and imaginary parts independently.

(a + bi) * (c + di) = (ac + adi + bci + dbi2) = (ac-bd) + (ad+bc)i  
Expand out the terms and apply the special rule that i2 is -1.  
Then collect real and imaginary parts to make a neat answer.

“We want to colour each region 
according to its convergence  
or divergence behaviour.”
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The following code creates the image array of
colour values of size xlen by ylen. We’ve called it atlas 
because we want to colour each region according to 
its convergence or divergence behaviour. 
atlas = empty((xlen,ylen))

We’re almost there! All that remains is to fill this
array with colour values and plot it using imshow(). 
The following code uses loops to fill it with the 
returned values from the mandel() function.
for ix in xrange(xlen):
    for iy in xrange(ylen):

        cx = xvalues[ix]
        cy = yvalues[iy]
        c = complex(cx, cy)

        atlas[ix,iy] = mandel(c,40)

        pass
    pass
You’ll recognise that this code is simply two loops, one
inside the other. The loops count through the rows 
and columns of the atlas array using variables ix and 
iy. These counts refer to the contents of the array, 
which are also counted from 0 to xlen-1, and not 1 to 
xlen. You may have noticed that we use xrange 
instead of range. range would work, but for very large 
lists xrange is more efficient because it doesn’t 
actually create a list, but gives you the contents as 
you ask for them. 

These two loops enable us to refer to every cell of 
the array using atlas[ix,iy]. The code inside the loops 
uses the counts ix and iy to look up the actual 
complex number to be tested by the mandel() 
function. The real and imaginary parts were in the 
xvalues and yvalues lists we created earlier, and can 
be dug out using xvalues[ix] and yvalues[iy]. 

The last part inside the loops is updating the 
contents of the array with the return value from the 
mandel() function. 

That’s it, the hard work is done! Now let’s see the
results. In a new cell, enter the following code.
figsize(18,18)
imshow(atlas.T, interpolation=”nearest”)

The first line sets the size of the plot to 18 by 18
because the default is too small. The imshow 
instruction plots the array. We also refer to atlas with 
a .T appended to it because otherwise the array is 
plotted on its side compared to what we want to see. 

Run the code and you’ll see the Mandelbrot set.
You can zoom into parts of the Mandelbrot set by 

changing the bottom-left and top-right points of the 
complex plane region. We simply change the code 
that sets the xvalues and yvalues. For example, using 
the rectangle from earlier in this guide with the values 
(-0.22 - 0.70i) bottom-left and (-0.21 -0.69i) as 
top-right means setting the following xvalues and 
yvalues as follows:
# set the location and size of the atlas rectangle
xvalues = linspace(-0.22, -0.21, 1000)
yvalues = linspace(-0.70, -0.69, 1000)

The resulting image was quite undefined because
we set too low a value for maximum iterations. 
Change it from 40 to 120 as follows:
atlas[ix,iy] = mandel(c,120)

The result is a more detailed image, as shown
below-left. It’s really quite beautiful! 

The complete Python code we’ve built up to plot our 
own Mandelbrot fractals is available for you to look 
over at http://makeyourownmandelbrot.blogspot.
co.uk/2014/04/sharing-code.html. I’ve added 
comments to help remind you what each code 
section does. 

Next month we’ll look at the Julia fractals, which are 
intimately related to the Mandelbrot fractals. They’re 
even more beautiful in my opinion! We’ll also extend 
our 2D fractals into interactive alien 3D landscapes 
you’ll be able to explore.  

PRO TIP
The code for the full 
programs to calculate and 
plot the Mandelbrot and 
Julia fractals is online at 
http://bit.ly/1qpnlsE.

PRO TIP
Don’t forget you can 
explore the Mandelbrot 
and other fractals using 
the interactive XaoS open 
source software at http://
bit.ly/1vLdz52 or through 
a web browser http://bit.
ly/1lbXYL1.

Tariq spends his time grappling with enterprise IT problems, 
informed by two decades of working with open technology.

In the divide by three 
function, the result 
trends towards, but never 
reaches, zero.

iterate function “divide by 3”, start value 10

va
lu

e

10

7.5

5

2.5

0
0         2             4                     6      8

iteration

It looks different from the image on the first page of this 
tutorial, but this is actually just a magnified section.


