
TUTORIAL MAILSERVER

www.linuxvoice.com

Last month, we used Arch Linux to build a mail
server. It accepts incoming mail and delivers it
to users’ mailboxes so that they can read it with

their favourite IMAP email client. But it accepts all
mail, including unwanted spam and virus-ridden ones.
This month, we’ll add filtering capabilities to our server
to help prevent undesirable messages finding their
way into our users’ mailboxes.

Our server can receive mail in two ways: its Mail
Transfer Agent (MTA) accepts mail directly from the
internet and its Mail Retrieval Agent (MRA) downloads
mail from other external mail servers. We used Postfix
for our MTA and Fetchmail for our MRA.

We’ll configure a new Mail Delivery Agent to filter
mail from both channels, either delivering it to our
IMAP server (also an MDA) or to reject it. We’ll use
Procmail for this new MDA. Install it from the repository
(we’re using Arch Linux for this project):
$ pacman -S procmail

The objective of our new MDA is to perform
system-wide mail filtering. The system-wide filters will
remove spam, viruses and so-on.

Procmail takes its instructions from a file, usually
called /etc/procmailrc. Create a basic file to begin with
that just delivers all mail:
LMTP_DELIVER=”/usr/lib/cyrus/bin/deliver -a $MAILBOX”
NL=”
“
:0 w
| $LMTP_DELIVER $MAILBOX
EXITCODE=$?
:0
/dev/null

The first line sets up our Cyrus-IMAP delivery
command-line. The NL variable contains a newline
character that we’ll use later on when writing to the log
file. The blocks beginning with :0 are recipies – the
first recipe delivers mail and the second one tells
Procmail to dump the message before exiting with an
error code.

Procmail’s processing stops once a delivering recipe
succeeds, so the second recipe would only be invoked
if there were a problem with delivery. Although
Procmail dumps the message when there is an error,
the agent that invoked Procmail would react to its
non-zero exit code by bouncing the message.

You can verify that Procmail works by sending a test
message through it and checking that it appears in our
test user’s inbox:

$ procmail MAILBOX=testuser < testmessage

It’s black and white
The simplest filters we can apply either accept or
block messages from specific senders. We can create
static files containing email addresses or domains
and then use those files as black- and white-lists. Add
these recipes into the \etc\procmailrc before the
existing delivery recipe:
:0
*? formail -x “From” -x “From:” -x “Sender:” \
 -x “Reply-To:” -x “Return-Path:” -x “To:” \
 | egrep -is -f /etc/procmail/whitelist
{
 LOG=”whitelisted$NL”
 :0 f
 | formail -fA “X-Whitelisted-$$: Yes”
}
:0
* $!^X-Whitelisted-$$: Yes
*? formail -x “From” -x “From:” -x “Sender:” \
 -x “Reply-To:” -x “Return-Path:” -x “To:” \
 | egrep -is -f /etc/procmail/blacklist
{
 LOG=”blacklisted$NL”
 :0
 /dev/null
}

We can then blacklist a domain, say example.com
and whitelist a user, say bob@example.com by writing
entries in the black- and white-list files referenced by
the recipes. The rules write a log message when they
match. You write to the Procmail log by assigning to
the LOG variable.

Whitelisted messages are marked by adding a
header, X-Whitelisted, suffixed with Procmail’s process
ID so later recipes can ignore similar headers that we
didn’t set. The formail command that is part of the
Procmail package is used to read and write message
headers. The blacklist passes messages that have this
header and otherwise discards messages that match
the blacklist rule. We’ll also use the presence or
absence of the whitelist header in other rules later on.

We can take blacklisting a step further and make
use of Realtime Blackhole Lists, or RBL. These are
DNS-based address blacklisting databases, also
known as DNSBL, that contain IP addresses of known
sources of unsolicited bulk email (spam). There is a
small utility that checks an IP address against various

PROCMAIL: ADD A SPAM FILTER
TO YOUR EMAIL SERVER
Filter unwanted mails, keep your inbox clean and make sure you
don’t pass any viruses on to your Windows-using friends.

 TUTORIAL

92

WHY DO THIS?
• Teach your mailserver to

keep your inbox Nigerian
prince-free.

• Prevent viruses from
using your emails as a
transmission vector.

• Control the way you
communicate!

JOHN LANE

MAILSERVER TUTORIAL

www.linuxvoice.com

blacklists. Install its package:
$ pacman -S rblcheck

You invoke rblcheck with a list of IP addresses and it
checks them against lists provided by sorbs.net,
spamhaus.org, spamcop.net and some others. It
returns a non-zero exit status if a given address is
blocked (it also echoes the blocked addresses to
standard output). You can use it like this:
$ rblcheck -qm 27.20.121.36

You need to extract the IP addresses from the
message header. One way to do this is with a little
Bash script, saved as /etc/procmail/header_ip that
reads message headers from its standard input:
#!/bin/bash
while read line
do
 if [[$line =~ \[([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+)\]]]
 then
 ip=${BASH_REMATCH[1]}
 [[$ip =~ ^127\.0|^10\.|^192.168\.]] || echo -n “$ip “
 fi
done

Don’t forget chmod +x to make it executable. A new
recipe uses the script and the rblcheck tool to drop
mail from addresses on these blackhole lists unless
they have also been whitelisted:
:0 h
HEADER_IP=|/etc/procmail/header_ip
:0
* $!^X-Whitelisted-$$: Yes
* ! ? if [-n “$HEADER_IP”]; then rblcheck -qm $HEADER_IP; fi
{
 LOG=”blackholed$NL”
 :0
 /dev/null
}

Meet the Assassins
Using realtime blackhole lists prevents a lot of spam
from reaching users’ mailboxes but some will still get
through. We need some additional help and it comes
in the form of SpamAssassin, which detects spam, and
ClamAV, which detects viruses. Begin by installing the
required packages:

$ pacman -S spamassassin razor clamav
$ pacman -U ~build/clamassassin/clamassassin-1.2.4-5-any.
pkg.tar.xz
$ pacman -U ~build/pyzor/pyzor-0.8.0-1-any.pkg.tar.xz
$ pacman -U ~build/dcc/dcc-1.3.155-1-x86_64.pkg.tar.xz

ClamAssassin uses ClamAV to virus-check email and
adds headers to messages found to contain viruses.
Its config file is installed to /etc/clamav/clamd.conf;
adjust it to include these definitions:
LogSyslog yes
LogFacility LOG_MAIL
LogTime yes
PidFile /var/run/clamav/clamd.pid
TemporaryDirectory /tmp
DatabaseDirectory /srv/mail/clamav
LocalSocket /var/lib/clamav/clamd.sock
User clamav

A separate daemon called freshclamd updates the
virus database. Review its configuration, in
/etc/clamav/freshclam.conf too:
LogSyslog yes
LogFacility LOG_MAIL
DatabaseDirectory /srv/mail/clamav
DatabaseMirror db.UK.clamav.net
DatabaseMirror database.clamav.net
NotifyClamd /etc/clamav/clamd.conf

Create the virus database directory, start the ClamAV
services and freshclam will download the virus
database:
$ mkdir -m 700 /srv/mail/clamav
$ chown clamav: /srv/mail/clamav
$ systemctl enable clamd freshclamd
$ systemctl start clamd freshclamd

You can test your ClamAV installation without
exposing your system to real viruses. You can instead
download files containing the EICAR test string and
use those for testing:
$ mkdir /tmp/eicar && pushd /tmp/eicar
$ wget https://secure.eicar.org/eicar.com
$ wget https://secure.eicar.org/eicar_com.zip
$ wget https://secure.eicar.org/eicarcom2.zip
$ popd && clamdscan /tmp/eicar
 - - - -- SCAN SUMMARY - - - --
Infected files: 3
$ clamassassin < /tmp/eicar/eicar.com
X-Virus-Status: Yes
X-Virus-Report: Eicar-Test-Signature FOUND
We need to add a Procmail recipe that uses

93

Is Procmail dead?

The last update to Procmail happened on 10 September
2001, quite a long time ago, with the release of version
3.22. Despite this, it is still very widely used and it has been
claimed that it does what it needs to do and requires no
more development. There are lots of Procmail examples
on the internet and the procmail-users mailing list is still
active. We’ve used Procmail for mail filtering because it
is well documented and there is a lot of information and
community support online. It is also well suited to use with
our MTA, MRA and MSA, so has everything covered.

If Procmail’s status bothers you, consider alternatives
like MailDrop (www.courier-mta.org/maildrop) or mail filter
applications that interface to Postfix (of course, these won’t
work if you need to filter mail through a mail retrieval agent
like Fetchmail).

Keep an eye on your Bayes
database.

TUTORIAL MAILSERVER

www.linuxvoice.com94

clamassassin to detect viruses.
:0 wf
| /usr/bin/clamassassin

Any messages containing detected viruses will have
an X-Virus-Status header added. We use this header
in another Procmail recipe to deliver into a quarantine
folder. Insert it just before the one that delivers clean
mail:
:0 w
* ^X-Virus-Status: Yes
| $LMTP_DELIVER -m Virus $MAILBOX

You can also download a test email that has an
attachment containing the EICAR virus and use it to
test your Procmail configuration. Use your email client
to create a Virus folder first.
$ wget https://bit.ly/eicar-testmail
$ procmail MAILBOX=testuser < eicar-testmail

SpamAssassin is a spam filter that uses various
techniques to detect spam. These include message
fingerprinting services, like Vipul’s Razor, Pyzor and the
Distributed Checksum Clearinghouse (DCC), and
Bayesian Filtering that can learn what spam looks like
if known spam is fed into it.

SpamAssassin’s default configuration performs
Bayesian Filtering and will also use Pyzor and Razor if
they are available. They need some configuration lines
added to /etc/mail/spamassassin/local.cf:
bayes_path /srv/mail/spamassassin/bayes/bayes
bayes_file_mode 0666
pyzor_options --homedir /etc/mail/spamassassin
razor_config /etc/mail/spamassassin/razor/razor-agent.conf

You should review the other configuration items,
adjusting it to suit your needs. You may like to rewrite
the headers of spam messages so they contain a
*****SPAM***** prefix.
rewrite_header Subject *****SPAM*****

SpamAssassin doesn’t enable DCC, because it isn’t
open source but, if you want to use it, you can enable it
by uncommenting the following line in /etc/mail/
spamassassin/v310.pre:
loadplugin Mail::SpamAssassin::Plugin::DCC
and then initialise DCC:
$ rm -f /opt/dcc/map
$ chmod 600 /opt/dcc/map.txt
$ cdcc load /opt/dcc/map.txt

You need to create a Bayes directory for the spamd
user and also register a Razor identity:
$ mkdir -pm 700 /srv/mail/spamassassin/bayes
$ chown -R spamd: /srv/mail/spamassassin

$ razor-admin -home=/etc/mail/spamassassin/razor -create
$ razor-admin -home=/etc/mail/spamassassin/razor -discover
$ razor-admin -home=/etc/mail/spamassassin/razor -register
Register successful. Identity stored in /etc/mail/spamassassin/
razor/identity-ruHZVUhY7x

Before you can launch the SpamAssassin daemon, it
needs some spam detection rules to use, which it
expects to find under /var/lib/spamassassin. Use the
update tool to download them:
$ sa-update

With the configuration complete, you can start the
daemon and run some tests. You can download
GTUBE, the Generic Test for Unsolicited Bulk Email,
and use it to test your SpamAssassin setup.
$ wget http://spamassassin.apache.org/gtube/gtube.txt
$ systemctl enable spamassassin
$ systemctl start spamassassin
$ spamc < gtube.txt
X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on
mailserver
X-Spam-Flag: YES
X-Spam-Level: ***

X-Spam-Status: Yes, score=1000.0

You can feed known Spam into the Bayesian filter,
however, that it may take a while before enough spam
is learnt before Bayesian spam detection gives results:
$ sa-learn --spam /path/to/spam/mails
Learned tokens from 683 message(s) (683 message(s)
examined)

Finally, we need to add a Procmail recipe to detect
spam. We limit spam checks to emails smaller than
250KiB – most spam is smaller than this and having
this rule avoids overloading spamd:
:0 fw
* < 256000
| /usr/bin/spamc

Any messages containing detected spam will have
a X-Spam-Status header added that we use to
quarantine them just like we did for viruses:
:0 w
* ^X-Spam-Status: Yes
| $LMTP_DELIVER -m Spam $MAILBOX

You can test your Procmail configuration with the
GTUBE test file. Use your email client to create a Spam
folder and then send a test spam into it:
$ procmail MAILBOX=testuser < gtube.txt

We need to change how our MTAs deliver mail so
that it is processed through Procmail. For Fetchmail,

Greylisting makes spam
go away.

Image source:http://postgrey.
schweikert.ch

PRO TIP
Use the freshclam
command to update
the virus database
on-demand.

MAILSERVER TUTORIAL

www.linuxvoice.com 95

replace the defaults section in /etc/fetchmailrc:
mda “/usr/bin/procmail MAILBOX=%T”

When Procmail is invoked by Fetchmail, it’s the
fetchmail user that delivers mail. Allow this by adding
it to the mail group:
$ usermod -aG mail fetchmail

Two changes are required for Postfix. First, in /etc/
postfix/main.cf, change the virtual_transport so that
it reads
virtual_transport = procmail

This tells Postfix to use a transport called procmail
to deliver mail. We define this transport by adding a
new definition to the end of /etc/postfix/master.cf. It
states that mail should be delivered by launching
Procmail:
procmail unix - n n - - pipe
 flags=OR user=cyrus argv=/usr/bin/procmail -t -m
MAILBOX=${recipient} /etc/procmailrc

Reload Postfix and then send some test emails and
look for them in your inbox. Congratulations, your
incoming emails are now processed through your
filtering system for a spam-free life!

In Submission
In part 1 we mentioned the Message Submission
Agent (MSA)that clients should use to send email
instead of sending it to the MTA’s SMTP port 25. The
MSA accepts submissions on port 587 with or
without TLS. By implenting MSA, we gain several
advantages, including the ability to have separate
control over inbound and outbound messages. We
need to enable MSA in /etc/postfix/master.cf.
Uncomment the submission daemon and the
following lines so that it looks like this:
submission inet n - n - - smtpd
 -o syslog_name=postfix/submission
 -o smtpd_client_restrictions=permit_mynetworks,reject

This allows clients on your network to connect and
send but any other connections would be rejected.
Reconfigure your email client to use port 587 instead
of port 25 and send a test message to confim that you
can send. We changed the log name so that the logs
label connections to the submission service differently;
you can confirm via the logs that your email client is
sending to the correct service.

We can now prohibit local clients from sending to
port 25. Create a lookup table to list the local networks
that should not be able to send via the MTA port. You
can also permit specific addresses if necessary. The
CIDR (Classless Inter-Domain Routing) table format is
suitable for specifying networks; here is an example
/etc/postfix/smtp_access.cidr that prohibits internal
networks except for a specific address (customise
yours according to your needs):
10.0.1.100 OK
10.0.0.0/8 REJECT
172.16.0.0/12 REJECT
192.168.0.0/16 REJECT

Add a rule in /etc/postfix/main.cf to check client
connections against the access table. The default

action is to permit so that genuine SMTP mail delivery
from the internet is allowed:
smtpd_client_restrictions =
 check_client_access cidr:/etc/postfix/smtp_access.cidr

Use postfix reload so that your changes take effect,
and then perform some tests from an email client to
ensure that you can send on port 587 but not port 25.
Verify also that incoming messages still work!

Another thing that using a MSA makes easy is
outbound filtering. You can also use Procmail to filter
outbound messages. You first configure a content_
filter on the submission service that invokes another
service to pass the message into Procmail, which must
re-inject it back into the message queue using the
Postfix sendmail command. This configuration goes in
/etc/postfix/master.cf, beginning with the content
filter. Add the following to the existing submission
definition, after the client restrictions:
 -o content_filter=procmail-outbound

Now, define the procmail-outbound service; append
to the end of the file:
procmail-outbound unix - n n - - pipe
 flags=Rq user=cyrus argv=/usr/bin/procmail -t -m
SENDER=${sender} /etc/procmail/outbound-recipes

Here’s an example outbound-recipes that uses
formail to add a header to the outbound message
before queuing it using Postfix’s “sendmail” command:
:0 f
| formail -fA “X-Outbound-Content-Filtered: Yes”
:0 w
| /usr/bin/sendmail -G -i -t -f $SENDER
EXITCODE=$?

We’ve now provided ways to separately filter both
inbound and outbound mail, and you can build on
these concepts to provide filters according to your
needs. In part 3 we’ll provide a way for end-users to
filter their own messages so they can organise them
into sub-folders and look at how users can access
mail when out of the office.

John Lane is a technology consultant with a penchant for
Linux. He helps new businesses and start-ups make the most
of open source software.

A Procmail primer
The procmailrc script is a series of recipes
that are applied sequentially to a message.
Each recipe begins with the cryptic :0
character sequence followed by optional
conditions and an action to perform if the
conditions are met. A recipe is considered
matched if its conditions are met.

Besides recipes, you can assign values to
variables. The special LOG variable writes
anything that is assigned to it into the log.

A recipe may have flags after its opening
:0 We’ve used these flags in our examples:

 h makes the rule process message
headers only.
 w makes the rule wait for its action to

complete.
 f means the rule is a filter and can alter the
message.
A condition is an asterisk and a regular

expression or a shell command. The
condition is satisfied if the expression
matches or a command succeeds.

Actions are either a file to write the
message to (we’ve used /dev/null in a few
places) or they begin with a pipe symbol and
launch a command, passing the message
into its standard input. Actions are assumed
to deliver the message and processing stops
on the first suvh recipe to be completed
(filter recipes are non-delivering).

