
CODING NINJA

www.linuxvoice.com

WHY DO THIS?
• So you don’t embarrass

yourself in an
international computing
magazine.

• To make sure that your
code works as expected.

• To catch any regression
errors before they cause
users problems.

In issue 7’s Code Ninja, we had a piece of code that
was supposed to output the Roman numerals for
a particular number. As some of you noticed, it did

not quite work as it should have. This month we’ll take
a look at what we should have done to save ourselves
the embarrassment of publishing code that doesn’t
work properly: testing.

Testing is the process of making sure code works
as it’s supposed to. This can mean anything from
informally entering a few values and making sure it’s
working properly, to a full suite of tests that run
automatically and rigorously test everything to make
sure it’s working as expected.

The simplest form of testing (and the one that
would have saved us two issues ago) is unit testing.
This is where you check a particular block of code
(typically a function or method) and ensure it’s
working correctly. Just to recap, our code from the
previous tutorial was:
symbols = [(‘M’, 1000), (‘C M’, 900), (‘D’, 500),

(‘C D’, 400), (‘C’, 100), (‘X C’, 90), (‘L’, 50),
(‘X L’, 40), (‘X’, 10), (‘I X’, 9), (‘V’, 5),
(‘I V’, 4), (‘I’, 1)]

def romannumeral(number):
while number > 0:

for symbol, value in symbols:
if number - value >= 0:

print symbol,
number = number - value
continue

number_in = raw_input(“Enter a number: “)
romannumeral(int(number_in))

This isn’t particularly conducive to testing, because
the same function that calculates the value also
outputs it. In other words, there’s nowhere to catch

and test the value of the Roman numeral before it’s
sent to the terminal.

The first thing we need to do then, is re-factor the
code so that the function returns the text for the
Roman numeral rather than printing it. The function
then becomes:
def romannumeral(number):

outstring = “”
while number > 0:

for symbol, value in symbols:
if number - value >= 0:

outstring += symbol
number = number - value
continue

return outstring
This also removes the spaces from between the

symbols, so we’ll remove them in the symbols list of
tuples as well.

Now you can capture what Roman numerals the
code is producing, and so you can now automate
testing of them.

PyUnittest
Testing libraries help you manage individual test
cases and run them appropriately. The most popular
such module for Python is PyUnittest. This is usually
included with Python, so you shouldn’t have to go
hunting around for anything.

With a few test cases added, the code becomes:
import unittest
// symbols list
// roman numers function
class Test(unittest.TestCase):

CODE NINJA:
UNIT TESTING
All* good programmers make sure their software works properly
before releasing it to the world. *most

 TUTORIAL

104

BEN EVERARD

If only we’d run this two months ago, we could have
spared ourselves some embarrassment.

Test-driven development
There is a school of thought on software
development that says that the first thing
you should do when embarking on a new
project is write a test. In this paradigm
(known as test-driven development or TDD),
the tests aren’t just a way to find bugs, but
form the specification for the program itself.

The process follows these steps:
1 Write a new test.
2 Run all tests and see if any fail.
3 If one or more tests fail, write new code to

fix the problem.
4 Run the tests again.
5 If the tests pass, clean up the code, then

return to step one.
The software then evolves as new tests

are added to specify new behaviour. The
software is always fully tested because new
features are only added after there is a test
to define the behaviour, and since the tests
are all run in each iteration, there shouldn’t
be any regressions.

NINJA CODING

www.linuxvoice.com 105

def test_9(self):
self.assertEqual(rommannumeral(9), “IX”)

def test_29(self):
self.assertEqual(romannumeral(29),”XXIX”)

def test_707(self):
self.assertEqual(romannumeral(707),”DCCVII”)

def test_1800(self):
self.assertEqual(romannumeral(1800),”MDCCC”)

if __name__ == ‘__main__’:
number_in = raw_input(“Enter a number: “)
print romannumeral(int(number_in))

You’ll need to add the symbols list (with the spaces
removed), and the romannumerals() function from
the previous code (they’re omitted here to save
space). We’ve called this file roman-test.py.

The condition __name__ == ‘__main__’ is true when
the code is being run from the command line, so this
allows us to still run it normally with python roman-
test.py, but it means that the code works properly
when imported into the test module.

The tests are all methods of a class that inherits
from unittest.TestCase, and they all call one of the
assert methods. Here we’ve used assertEqual() to
check that the value returned from the
romannumeral() function is the right value.

If you call the file containing the code roman-test.
py, you can run the tests with:
python -m unittest roman-test

Ah, it seems that three of the four tests fail. It turns
out that there’s an error in our code that generates the
Roman numerals. The continue statement should be
a break statement. If you make this change, you
should find that all the tests pass.

Getting assertive
In this example, we’ve used assertEqual to check if a
particular test passes or not, but there are many
different methods you can use. Some of the most

useful are assertTrue(statement),
assertRaises(exception), assertIsInstance(object,
class) and assertAlmostEqual(value1, value2).
You can get a full list from the documentation at
https://docs.python.org/2/library/unittest.html.

The above test cases only check four numbers. It’s
trivially easy to add more test cases (we kept it short
to save space). In fact, in this case, it would be
possible to set an upper bound (say, 1000), and enter
the correct data for every possible number. This way
we could ensure that it was definitely producing the
correct output. This is known as exhaustive testing.

However, if the software had a wider range of
inputs, then it may not be practical to run an
exhaustive test. In this case, we’d have to be selective
in which values we test. We want to pick the values
that are most likely to lead
to an error.

There aren’t any hard-and-
fast rules about this, but
there are a few guidelines
that can help you. You want
broad coverage. That
means that you don’t want
to cluster all your tests in one area. You also want to
check areas where the output flips from one case to
the next (eg 8 and 9 which go from VIII to IX). Edge
and corner cases can also be fertile sources of errors.
This is where you push one or more parameters to
their maximum values.

If you create a good suite of tests when developing
a particular part of a piece of software, then you can
use these tests to ensure that you don’t accidentally
introduce a bug (or regression) into this area as you
add features, or fix other bugs. This is known as
regression testing, and as software becomes more
complex, it become more important.

Java’s JUnit is probably the
best known of the unit
testing frameworks, but
SUnit (written for the
Smalltalk programming
language) came first.

Other forms of testing
Here we’ve looked at unit testing. This is great for making
sure that a particular part of your program is working
properly, but in complex software, this can still miss bugs.

 Integration testing
Unit testing checks that each bit of code works correctly by
itself. The next step is to make sure that all the bits of code
work properly when combined together. This is known as
integration testing.

 Systems testing
Most programs aren’t isolated bits of code, but part of a
larger ecosystem. For example, they might get some of
their data from an external database, or send files to
another server. Systems testing is where you test that the
software works correctly with all the external services that
it uses.

 Usability testing
Bugs aren’t just bits of code that don’t work properly. They
can also be things that don’t work as the user expects
them, or confusing GUIs. Usability testing is where you put
real users in front of the software and make sure it works
as they expect it to.

“Testing libraries help you
manage individual test cases
and run them appropriately.”

