
CODING EDSAC AND DAVID WHEELER

www.linuxvoice.com

This month we return to the early days of
modern computing. Specifically, to Cambridge
(UK) in the late 1940s, and the first electronic

digital stored-program computer to see regular
service: the Electronic Delay Storage Automatic
Calculator, or EDSAC (inspired by von Neumann’s First
Draft of a Report on the EDVAC). The machine itself
shared a lot of features with other computers of
similar vintage, but it was while working on EDSAC
that David Wheeler developed the idea of subroutines
and the first very basic assembler, making a
contribution to computing that continues to this day.

EDSAC was constructed by Maurice Wilkes and his
team at the University of Cambridge Mathematical
Laboratory. It first ran in May 1949 and was
immediately operational for research. Up in

Manchester, the
Mark I was first run
in April 1949 but
wasn’t running
regularly or error-free
until June 1949, so
EDSAC beat it into

regular service by a month.
EDSAC had mercury delay line memory, vacuum

tubes for logic, punched-tape input and teleprinter
output. Initially, there were 512 memory locations of
18 bits each available; later, in 1952, a further 512
locations came online. Timing issues meant that the

first bit couldn’t be used, so an instruction consisted
of a 5-bit instruction code, one unused bit, a 10-bit
memory address, and a marker bit that identified
whether the instruction was to operate on a number
that was contained in one word or in two. This meant
that EDSAC wasn’t restricted to 17-bit numbers but
could also use 35-bit numbers contained in two
words. Numbers were stored as binary two’s
complement. The accumulator held 71 bits, so two
35-bit numbers could be multiplied without loss of
precision. Initially it had only an accumulator and a
multiplier registers -- David Wheeler designed and
added an index register in 1953.

EDSAC and subroutines
David Wheeler (who earned the world’s first Computer
Science PhD while working on EDSAC) was asked by
Wilkes in 1949 to create a library of programs and
subroutines for the machine. Grace Hopper was
beginning to think about the same ideas at about this
time, working on UNIVAC in the US. Wilkes and Hopper
met when Wilkes visited the US in 1950, and Wilkes
reported feeling that the two groups had much in
common with how they thought about programming.
In a 1958 paper by Hopper, she acknowledged that
while subroutines had been a part of computing since
the war years, the first real organisation and
systematisation of them was done by the EDSAC
group. The EDSAC library was certainly operational
before Hopper’s UNIVAC libraries (and her A-0
‘compiler’ which linked subroutines together) were. But
clearly the notion of reusing code like this occurred to
several people independently at about the same time
– it’s a fairly obvious solution to a common problem,
and early programmers were a resourceful bunch.

However, it was Wheeler who got there first; and a
jump to subroutine is often still known as a Wheeler
Jump. When the programmer called a Wheeler
subroutine, the program would jump to the start of the
subroutine with the address of the program counter
plus one in the register. (So if it was at line 10, it would
put line 11 into the register before jumping.) The
subroutine would then write that address into its final
line so it could jump back when it was finished. The
user would have to copy the subroutine code into the
right place on the tape. This demonstrates a
technique used extensively by early programmers but
which a modern coder would disapprove of: directly
altering code to enable jumps and indexing.

EDSAC, DAVID WHEELER AND
THE CAMBRIDGE CONNECTION
Programmers everywhere, give thanks for EDSAC and David
Wheeler, first implementer of the subroutine.

 TUTORIAL

106

JULIET KEMP

Bill Renwick (L) and
Maurice Wilkes in front
of the EDSAC I. Copyright
Computer Laboratory,
University of Cambridge.
Reproduced by permission.

“The EDSAC library was
certainly operational before
Grace Hopper’s UNIVAC libraries.”

EDSAC AND DAVID WHEELER CODING

www.linuxvoice.com

By 1951, there were 87 subroutines available for
EDSAC, covering a wide range of mostly
mathematical operations, although print, layout, input,
and loop simulation subroutines were also included.

Wheeler and the EDSAC team are also credited with
the world’s first assembler, in the EDSAC’s Initial
Orders 2. EDSAC’s instructions (see below) were
designed to be represented by a mnemonic single
letter (eg A for Add was coded using the bit pattern for
A). The ‘initial orders’, setting up the basic operations
for the machine, were hard-wired on switches and
automatically loaded at startup into the first memory
locations. EDSAC would then run from location 0. The
first version of the initial orders was very basic, and in
particular had the major limitation that all memory
locations had to be absolute (ie referring to a
numbered location).

The Initial Orders 2, written by Wheeler in May 1949,
among other things enabled the programmer to refer
to locations relative to a specified point, making it
much easier to edit and debug programs. The Initial
Orders 2 are fully described in the 1951 textbook The
Preparation of Programs for an Electronic Digital
Computer, by Wilkes, Wheeler, and Gill; this had a big
impact on the programming culture of the 1950s, and
its legacy lives on today. There’s also a listing of the
Initial Orders in Martin Richard’s excellent poster at
www.cl.cam.ac.uk/~mr10/Edsac/edsacposter.pdf.

EDSAC emulator
Warwick University’s website (www.dcs.warwick.
ac.uk/~edsac) has an EDSAC simulator for Linux.
Unfortunately it’s very old (2002), so you may need to
do a little fiddling to install it on a modern system.
Using Debian (this should also work on Ubuntu;
apologies to users of other distros), this is how I did it:

Click the Software menu item and download the
Linux version of the software from that page.
Unzip and untar with tar zxf EdsacLX_v102.tar.gz.
Now cd into that directory. If you type ./runedsac
you will most likely get a message telling you that
the shared library libstdc++-libc6.1-1.so.2 cannot
be found. This is a very old library which has been
superseded.
The library can be found for Debian in the
libstdc++2.9-glibc2.1_2.91.66-4_i386.deb
package, available from http://archive.debian.net/
woody/libstdc++2.9-glibc2.1. Download the Deb
from that link (it advises you to use Aptitude but
unless you wish to install lots of very old packages
that seems like overkill to me).
Install the Deb with sudo dpkg -i libstdc+_-
libc6.1-1.so.2.
Run the emulator with ./runedsac and this time all
should be well.
NOTE: this is a very old, archived library package,

which could have bugs or security risks. Install at your
own risk. It might be sensible to uninstall it once you’re
done playing with EDSAC, using dpkg -r. (With thanks
to the debian-user list for the link.)

Let’s have a quick look at the emulator display panel
Monitor display at left shows a single long tank
(select which one with the Long Tank counter in the
panel underneath). Bright dot for 1, small dot for 0.
This represents a CRT display.
Output This represents the teleprinter output from a
program.
Buttons These are mostly self-evident, but Single
EP runs a program an instruction at a time. The
Clear button was a slightly later addition. The
original method of clearing the memory was,
apparently, to earth the electrical terminals with a
wet finger.
The clock represents ‘real time’ taken by the EDSAC.
If you click the Real Time button in the top menu
bar, the simulator will run in real time; otherwise it
will run as fast as possible, but the clock will still
show ‘EDSAC time’ to give you an idea of how fast
(or not…) the original machine was.
Registers At bottom left are a representation of the

107

EDSAC instruction set (with thanks to Martin Richards):

An A += mem(n) (add n to the
 accumulator).
Sn A -= mem(n) (subtract n from
 the accumulator).
Hn R += mem(n) (add n to
 the register).
Vn AB += mem(n) * R (add n
 multiplied by the register to the
 long accumulator.
Tn mem(n) = A; ABC = 0 (store
 accumulator in n, zero whole
 accumulator).
Un mem(n) = A (store accumulator
 in n, do not zero accumulator).
Cn AB += mem(n) & R (add n anded
 with R to the accumulator).
Rn Shift whole accumulator right by
 the number of places
 corresponding to the least
 significant 1 in the shift
 instruction.

Ln As Rn but shift left.
En If A >= 0, goto n.
Gn If A < 0, goto n.
In Read next paper tape character
 into least significant bits of n.
On Output character in most
 significant bits of n.
Fn Verify last character output.
Xn No operation.
Yn Add a 1 to bit position 35 of
 the whole accumulator (sign bit
 counts as zero). This rounds the
 accumulator up to 34
 fractional bits.
Zn Stop the machine and ring a bell.
 n refers to a numerical memory
 location. All instructions would
 end with either S or L, for a short
 word or a long word. The L
 instructions worked with more
 of the accumulator.

PRO TIP
A quotation often
attributed to David
Wheeler: “Compatibility
means deliberately
repeating other people’s
mistakes.”

EDSAC simulator showing
the final output of the
Squares program. You can
see from the dial that this
took about six minutes to
run.

CODING EDSAC AND DAVID WHEELER

www.linuxvoice.com108

registers (accumulator, multiplier, etc. In the real
thing these were displayed on CRT tubes.
Dial This enables the operator to input a single
decimal number.
The quickest way to see the emulator in operation is

to run one of the included demo programs. For
example, the Squares one, which is an exact copy of
the Squares program run for the first time in 1949. To
load it, click Clear, then choose Initial Orders 1 from
the menu bar. Choose Open > Edsac Tapes >
Demonstration Programs > Squares.txt, and the
Squares file will pop up. Select Long Tank 0, then hit
Start, and the initial orders, then the program, will load.
You should soon see output on the teleprinter box.
You can look at the various Long Tanks to see what is
happening inside the machine.

The Tutorial Guide at the Warwick website
(www.dcs.warwick.ac.uk/~edsac/Software/
EdsacTG.pdf) includes a full rundown of the Squares
program, so we won’t reproduce that here (especially
as it is very long). Instead, let’s try writing a much
simpler program. To make life easier, we’re going to
switch to using the Initial Orders 2 (change the
drop-down box in the menu bar).

This program will output the numbers 1–5. Note
that while I have added comments for ease of layout,
these shouldn’t be typed into the program. However
you can use new lines and spaces as you please. (Not
historically accurate, but much simpler!) Save this as a
.txt file.
T 64 K // Load the program in from instruction 64
G K // Set θ to current load point
Z F // Stop
O 9 @ //
O 10 @ //
O 11 @ //
O 12 @ // Print (output) location θ + 9 - 15
O 13 @ // (see below)
O 14 @ //
O 15 @ //

ZF // Stop
& F // Store linefeed
F // Store figure shift
1 F // Store 1
2 F // Store 2
3 F // and so on
4 F
5 F
EZPF // Enter program at location θ
(With thanks to the Tutorial Guide.) F (which has the
value 0) corresponds to S and D (value 1) to L in Initial
Orders 2.

This loads the program from location 64 (which
corresponds with the first line of long store 2, making
it easy to find it and check that it has loaded correctly).
It then sets the marker θ, and stops. The stop means
that once we’ve loaded the program with the ‘Start’
button, we can check what it looks like before hitting
‘Reset’ to clear the Stop flag and continue with
operations.

The next seven lines output locations θ + 9 to θ +
15. Instead of hard-coding a memory location, you set
the θ marker, and then count lines from there. So θ + 9
is the line that contains & F; and so on. You store the
data in one place and output it in another. The next ZF
stops operation. After this we have the data storage. &
is the line feed character, and # is the figure shift (* is
the letter shift). You need to specify whether you’re
outputting figures or letters in advance. We then store
a bunch of numbers, and EZPF jumps back to θ and
begins operation from there. (Which, in this instance,
means an immediate Stop until the user hits Reset.)

Load and hit Start, and take a look at Long Tank 2.
Then hit Reset to run the rest of the program and you
should see the expected output. Try editing it by
replacing #F with *F and output words instead.

If you try to edit this to output 1-6, you will notice
that adding an extra line in the first part of the
program means editing all the O lines. To avoid this,
we can set another mark point. I’ve added line
numbers for ease of reading but again, don’t include
them in the file.

T 64 K // load at location 64
G K // Set θ mark
T 47 K // This loads label M
P 9 @ // and this places it at line θ + 9
T Z // Restore θ (ie set it here)

0 Z F // stop
1 O 0 M // output location M + 0
2 O 1 M // output location M + 1
.... O 2-6 M // and so on, as previous version
8 ZF // stop
M 0 & F // Store line feed
 1 # F // Store figure shift
 2 1 F // Store 1 ... and so on as before

EZPF // Start execution from θ
This has the same output as before, but instead of

having to calculate “lines after θ” and alter them if you
add more lines, you set the mark M (at a certain
number of lines after θ) and then calculate data

We’ve calculated the
first six of the Fibonacci
numbers, with the listing
on left and the output
showing in the teleprinter
screen.

EDSAC AND DAVID WHEELER CODING

www.linuxvoice.com 109

storage from there. If you add more lines before M,
you only have to edit the P 9 @ line.

Calculating Fibonacci numbers
Let’s try using a loop to calculate and output the
Fibonacci sequence:
T 64 K // As above, this section reads in the program
G K // and sets θ
T 47 K // and these two lines
P 20 @ // set M
T Z // Reset θ

0 Z F // stop bell

1 O 0 M // output line feed
2 O 1 M // output figure shift
3 O 2 M // output 1st Fib number
4 O 0 M // lf
5 O 3 M // 2nd Fib number
6 O 0 M // lf
7 A 4 M // load number of rounds to run

8 T 4 M // transfer number of rounds out of accumulator and
clear
9 A 2 M // load 1st Fib number into accumulator
10 A 3 M // add 2nd Fib number
11 U 3 M // transfer total into space for 2nd Fib number DO
NOT clear
12 S 2 M // subtract original 1st from accumulator
13 T 2 M // transfer original 2nd into space for 1st
14 O 3 M // output new 2nd
15 O 0 M // lf
16 A 4 M // transfer number of rounds
17 S 5 M // subtract one round
18 E 8 @ // is number still positive? If so loop back to line 8
19 ZF // otherwise stop

M 0 & F // data! Line feed
 1 # F // figure shift
 2 1 F // 1st number
 3 1 F // 2nd number
 4 3 F // number of rounds
 5 1 F // 1 -- for subtracting from rounds

 EZPF // start from θ
The initial few lines are the program setup, as

discussed above. Lines 1–7 output the initial ‘seed’
numbers of the sequence, and load the number of
rounds to run. The main program loop is lines 8–18.
We add the two seed numbers, store the result, and
then move the 2nd of the seed numbers to the 1st
storage position (line M2). As you’ll notice, this is done
by subtracting #1 from the total (leaving #2) and
storing the result in position #1. We now have the next
two numbers ready for the next loop, and a cleared
accumulator. We subtract one from the number of
rounds, check whether it’s positive (note that 0 is
positive, so you’ll get one more round than you might
expect), and if it is, jump back to the start of the loop,
where the number of rounds remaining is stored

again. Once the number in M4 has reached -1, the
program will stop (line 19).

Enter the program without line numbers and
comments, then run it by hitting Clear, Start, and
Reset to begin output, and you should get the first 6
Fibonacci numbers, as in the screenshot.

However, if you increase the value in line M4 and
run it again, you’ll start getting weird output. This is
because this output method only works for single
digits. For larger numbers you’ll need to use the
subroutine P6 to print them properly. Unfortunately
there’s no space to look at that in this tutorial, but
there’s plenty of information in the emulator’s Tutorial
Guide if you want to extend this program, and it has a
few suggested programming challenges. You can
also examine the program listings included with the
emulator software to learn more.

Other EDSAC tidbits
There is a collection of personal reminiscences from
the program at the University of Cambridge Computer
Laboratory webpage (www.cl.cam.ac.uk/events/
EDSAC99/reminiscences). These include mention of
the dissecting fluid smell of the EDSAC room (which
was in what had been the anatomy school); memories
of some of the technical experiments with magnetic
tape; operational difficulties; and some recollections
of the EDSAC summer schools (including one from
Edsger Dijkstra).

Its successor, EDSAC 2, was commissioned in
1958; and in 1961 a version of Autocode (a high-level
programming language a bit like ALGOL) was
prodcued for EDSAC 2. Currently the Computer
Conservation Society is building a working replica of
EDSAC, to live at the National Museum of Computing
at Bletchley Park, and hopes to have it operational by
late 2015. See www.tnmoc.org/special-projects/
edsac for more info.

Juliet Kemp is a scary polymath, and is the author of
O’Reilly’s Linux System Administration Recipes.

EDSAC may have been the
site of the first video game
– a version of noughts and
crosses (tic-tac-toe) which
output to the cathode ray
tube. (The software is
available for the simulator
as oxo.txt.) Copyright
Computer Laboratory,
University of Cambridge.
Reproduced by permission.

