
TUTORIAL PYTHON & TWITTER

www.linuxvoice.com

This issue we're going to create our own Twitter
application using Python and two libraries:
Tweepy, a Twitter Python library, and our old

favourite EasyGUI, a library of GUI elements. This
project will cover the creation of the application using
Python and also the configuration of a Twitter
application using the Twitter development website
dev.twitter.com.

Tweepy is a Python library that enables us to create
applications that can interact with Twitter. With
Tweepy we can:

Post tweets and direct messages.
View our time line.
Receive mentions and direct messages.
Search for hashtags.
Now you may be thinking “Why would I want to use

Python with Twitter?” Well, dear reader, quite simply
we can use Python to build our own applications that
can use Twitter in any of the ways listed above. But
we can also use Twitter and Python to enable
interaction between the web and the physical world.
We can create a script that searches for a particular
hashtag, say #linuxvoice, and when it finds it, an LED
can flash, a buzzer can buzz or a robot can start
navigating its way around the room.

In this tutorial we will learn how to use Tweepy and
how to create our own application.

Downloading Tweepy and EasyGUI
Tweepy The simplest method to install Tweepy on
your machine is via Pip, a package manager for
Python. This does not come installed as standard on
most machines, so a little command line action is
needed. The instructions below work for all Debian-
and Ubuntu-based distros.

First, open a terminal and type sudo apt-get update
to ensure that our list of packages is up to date. You
may be asked for your password – once you have
typed it in, press the Enter key.

You will now see lots of on-screen activity as your
software packages are updated. When this is
complete, the terminal will return control to you, and
now you should type the following to install Pip. If you
are asked to confirm any changes or actions, please
read the instructions carefully and only answer 'Yes' if
you're happy.
sudo apt-get install python-pip

With Pip installed, our attention now shifts to
installing Tweepy, which is accomplished in the same
terminal window by issuing the following command.
sudo pip install tweepy

Installation will only take a few seconds and, when
complete, the terminal will return control to you. Now
is the ideal time to install EasyGUI, also from the Pip
repositories.
pip install easygui

Twitter apps
Twitter will not allow just any applications to use its
platform – all applications require a set of keys and
tokens that grant it access to the Twitter platform.

The keys are:
consumer_key
consumer_secret
And the tokens are:
access_token
access_token_secret
To get this information we need to head over to

https://dev.twitter.com and sign in using the Twitter
account that we wish to use in our project. It might be

To create an application you will need to sign in with the
Twitter account that you would like to use with it.

At the end of this project
you will have made a
functional Twitter client
that can send and receive
tweets from your Twitter
account.

PYTHON:
WRITE A TWITTER CLIENT
Why fill up the internet with pointless 140-character drivel yourself
when you can write an application to do it for you?

 TUTORIAL

LES POUNDER

78

WHY DO THIS?
• Create your own custom

Twitter application from
less than 50 lines of
Python code.

• Learn more about how
Twitter can be used in
your projects.

• Delve deeper into the
Python language.

PYTHON & TWITTER TUTORIAL

www.linuxvoice.com 79

prudent to set up a test account rather than spam all
of your followers. When you have successfully signed
in, look to the top of the screen and you'll see your
Twitter avatar; left-click on this and select “My
Applications”. You will now see a new screen saying
that you don't have any Twitter apps, so let’s create
our first Twitter app.

To create our first app, we need to provide four
pieces of information to Twitter:

The name of our application.
A description of the application.
A website address, so users can find you. (This can
be completed using a placeholder address.)
Callback_URL. This is where the application should
take us once we have successfully been
authenticated on the Twitter platform. This is not
relevant for this project so you can either leave it
blank or put in another URL that you own.
After reading and understanding the terms and

conditions, click on “I Agree”, then create your first
app. Right about now is an ideal time for a cup of tea.

With refreshment suitably partaken, now is the time
to tweak the authentication settings. Twitter has auto
generated our API key and API secret, which are our
consumer_key and consumer_secret respectively in
Tweepy. We can leave these as they are. Our focus is
now on the Access Level settings. Typically, a new app
will be created with read-only permissions, which
means that the application can read Twitter data but
not post any tweets of direct messages. In order for
the app to post content, it first must be given
permission. To do this, click on the “modify app
permissions” link. A new page will open from which
the permissions can be tweaked. For this application,
we need to change the settings to Read and Write.
Make this change and apply the settings. To leave this
screen, click on the Application Management title at
the top-left of the page.

We now need to create an access token, which
forms the final part of our authentication process.
This is located in the API Keys tab. Create a new token
by clicking Create My Access Token. Your token will
now be generated but it requires testing, so scroll to
the top-right of the screen and click “Test OAUTH”.
This will test your settings and send you to the OAuth
Settings screen. In here are the keys and tokens that
we need, so please grab a copy of them for later in

this tutorial. These keys and tokens are sensitive, so
don't share them with anyone and do not have them
available on a publicly facing service. These details
authenticate that it is YOU using this application, and
in the wrong hands they could be used to send spam
or to authenticate you on services that use the OAuth
system.

With these details in hand, we are now ready to
write some Python code.

Python
For this tutorial, we'll use the popular Python editor
Idle. Idle is the simplest editor available and it provides
all of the functionality that we require. Idle does not
come installed as standard, but it can be installed
from your distribution’s repositories. Open a new
terminal and type in the following.

For Debian/Ubuntu-based systems
sudo apt-get install idle-python2.7

With Idle now installed it will be available via your
menu, find and select it to continue.

Idle is broken down into two areas: a shell where
ideas can be tried out, and where the output from our
code will appear; and an editor in which we can write
larger pieces of code (but to run the code we need to
save and then run the code). Idle will always start with
the shell, so to create a new editor window go to File >
New and a new editor window will appear. To start
with, let's look at a simple piece of test code, which will

Creating a new application
is an easy process, but
there are a few hoops to
jump through in order to be
successful.

Using Tweepy with the Raspberry Pi

Tweepy is a versatile library for building all sorts of internet-
of-things-projects, and it's right at home on the Raspberry
Pi. For example, a simple project that could be an extension
activity from this project, is altering the code so that when
a tweet is successfully sent a green LED is flashed, but
when an error occurs a red LED can be flashed to indicate
the issue. From this simple project to the other end of the
scale and a more challenging project is a home automation
system that can respond to a direct message (DM) that
triggers the heating to come on, or control a web cam
mounted on a servo.

Applications are set to be
read-only by default, and
will require configuration
to enable your application
to post content to Twitter.

TUTORIAL PYTHON & TWITTER

www.linuxvoice.com80

will ensure that our Twitter OAuth authentication is
working as it should and that the code will print a new
tweet from your timeline every five seconds.
import tweepy
from time import sleep
import sys

In this first code snippet we import three libraries.
The first of these is the tweepy library, which brings
the Twitter functionality that we require. We import
the sleep function from the time library so that we
can control the speed of the tweets being displayed.
Finally we import the sys library so that we can later
enable a method to exit the Twitter stream.
consumer_key = "API KEY"
consumer_secret = "API SECRET"
access_token = "=TOKEN"
access_token_secret = "TOKEN SECRET"

In this second code snippet we create four variables
to store our various API keys and tokens. Remember
to replace the text inside of the “ " with the keys and
tokens that you obtained via Twitter.
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)

For the third code snippet we first create a new
variable called auth, which stores the output of the
Tweepy authorisation handler, which is a mechanism
to connect our code with Twitter and successfully
authenticate.
api = tweepy.API(auth)
public_tweets = api.home_timeline()

The fourth code snippet creates two more
variables. We access the Twitter API via Tweepy and
save the output as the variable api. The second
variable instructs Tweepy to get the user’s home
timeline information and save it as a variable called
public_tweets.
for tweet in public_tweets:

try:
print tweet.text
sleep(5)

except:
print("Exiting")
sys.exit()

The final code snippet uses a for loop to iterate over
the tweets that have been gathered from your Twitter
home timeline. Next up is a new construction: try and
except. It works in a similar fashion to if and else, but
the try and except construction is there to follow the
Python methodology that it's “Easier to ask for

forgiveness than for permission”, where try and
except relates to forgiveness and if else refers to
permission. Using the try and except method is seen
as a more elegant solution – you can find out why at
https://docs.python.org/2/glossary.html#term-eafp.

In this case we use try to print each tweet from the
home timeline and then wait for five seconds before
repeating the process. For the except part of the
construction we have two lines of code: a print
function that prints the word “Exiting”, followed by the
sys.exit() function, which cleanly closes the
application down.

With the code complete for this section, save it,
then press F5 to run the code in the Idle shell.

Sending a tweet
Now that we can receive tweets, the next logical step
is to send a tweet from our code. This is surprisingly
easy to do, and we can even recycle the code from the
previous step, all the way up to and including:
api = tweepy.API(auth)

And the code to send a tweet can be easily added
as the last line:
api.update_status("Tinkering with tweepy, the Twitter API for
Python.")

Change the text in the bracket to whatever you like,
but remember to stay under 140 characters. When
you're ready, press F5 to save and run your code.
There will be no output in the shell, so head over to
your Twitter profile via your browser/Twitter client and
you should see your tweet.

We covered EasyGUI in LV006, but to quickly recap,
it's a great library that enables anyone to add a user
interface to their Python project. It's easier to use than
Tkinter, another user interface framework, and ideal
for children to quickly pick up and use.

For this project we will use the EasyGUI library to
create a user interface to capture our status message.
We will then add functionality to send a picture saved
on our computer.

Adding a user interface
Open the file named send_tweet.py and let's review
the contents.
import tweepy
from time import sleep
import sys
import easygui as eg

This code snippet only has one change, and that is
the last line where we import the EasyGUI library and

EasyGUI looks great and is an easy drop-in-replacement
for the humble print function.

Using EasyGUI we can
post new messages to the
desktop via the msgbox
function.

PYTHON & TWITTER TUTORIAL

www.linuxvoice.com 81

Les Pounder is a maker and hacker specialising in the
Raspberry Pi and Arduino. Les travels the UK training
teachers in the new computing curriculum and Raspberry Pi.

Where can I find the completed code?

All of the code for this project can be downloaded from
Les' GitHub repository https://github.com/lesp/LinuxVoice_
Twitter_Tweepy.

If you are not a GitHub user, you can still download the
code as a Zip file from https://github.com/lesp/LinuxVoice_
Twitter_Tweepy/archive/master.zip.

rename it to eg. This is a shorthand method to make
using the library a little easier.
consumer_key = "Your Key"
consumer_secret = "Your secret”
access_token = "Your token"
access_token_secret = "Your token"
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)

These variables are exactly the same as those
previously.
message = eg.enterbox(title="Send a tweet", msg="What
message would you like to send?")

This new variable, called message, stores the
output of the EasyGUI enterbox, an interface that asks
the user a question and captures their response. The
enterbox has a title visible at the top of the box, and
the message, shortened to msg, is a question asked
to the user.
try:

length = len(message)
if length < 140:

api.update_status(message)
else:

eg.msgbox(msg="Your tweet is too long.
It is "+str(length)+" characters long")
except:

sys.exit()
For this final code snippet we're reusing the try

except construction. Twitter has a maximum tweet
length of 140 characters. Anything over this limit is
truncated, so we need to check that the length is
correct using the Python len function. The len
function will check the length of the variable and save
the value as the variable length.

With the length now known, our code now checks
to see if the length is less than 140 characters, and if
this is true it runs the function update_status with the
contents of our message variable. To see the output,
head back to Twitter and you should see your tweet.
Congratulations! You have sent a tweet using Python.
Now let's put the icing on the cake and add an image.

Adding an image to our code
The line to add an image to our tweet is as follows
image = eg.fileopenbox(title="Pick an image to attach to your
tweet")

We create a variable called image, which we use to
store the output from the EasyGUI fileopenbox
function. This function opens a dialog box similar to a
File > Open dialog box. You can navigate your files and

select the image that you wish to attach. Once an
image is chosen, its absolute location on your
computer is saved as the variable image. The best
place to keep this line of code is just above the line
where the status message is created and saved as a
variable called message. With the image selection
handled, now we need to modify an existing line so
that we can attach the image to the update.

Navigate to this line in your code:
api.update_status(message)

And change it to this:
api.update_with_media(image, status=message)

Previously we just sent text, so using the update_
status function and the message contents was all
that we needed, but to send an image we need to use
the update_with_media function and supply two
arguments: the image location, stored in a variable for
neatness; and the status update, saved as a variable
called message.

With these changes
made, save the code
and run it by pressing
F5. You should be
asked for the images to
attach to your code,
and once that has been
selected you will be asked for the status update
message. With both of these supplied, the project will
post your update to Twitter, so head over and check
that it has worked.

Extension activity
Following these steps, we're managed to make two
scripts that can read our timeline and print the output
to the shell, but we can also merge the two together
using an EasyGUI menu and a few functions. The code
for this activity is available via the GitHub repository,
so feel free to examine the code and make the
application your own.

Sending an image is made
easier via a GUI interface
that enables you to select
the file that you wish to
send. Once selected, it
saves the absolute path to
the file.

“Now that we can receive
tweets, the next logical step is
to send a tweet from our code.”

