
CODING ARDUINO

www.linuxvoice.com

This tutorial exists because I am a lazy miser.
These are two undersung qualities, which in
my opinion make the best engineers, but

maybe I am biased as well as lazy and a miser. In any
case, because of my character flaws, I have learnt and
will now pass on to you some amazing things:

How to use a cheap OLED display with an Arduino.
How to create and package an Arduino library.
How to save precious dynamic memory.
How to save some I2C pins.
How to do your own hardware enablement projects.
How to convert bitmap images into code.
So, everyone’s a winner. Except people who make

expensive OLED displays. This is going to be the first
of a two-part tutorial where we learn to tame both
displays and the Arduino by writing our own code and
building our own libraries. This month we’re going to
work out how to communicate with the screen and
create a library that encapsulates those commands
into a library before next month, creating lots of pretty
works and pictures with our library.

Cautionary beginnings
OLED displays can easily be powered long-term by
batteries, giving you freedom to use the serial port
connection to find out what is going on inside its tiny
mind. I wanted to build a device with a display that
would log and tell me the temperature in the water
tank in my attic (relayed by another Arduino), because
I am too lazy to go up to the attic to find out. And that
is when I happened on a cheap supply of OLED
displays online, which were selling for $3 a unit
instead of the $15 to $20 I was used to.

When they arrived I discovered that these displays
differed significantly enough from the “standard”
ones that no existing library would work with them. I

could have adapted an existing library, but there were
some other implementation issues. Cheapskatiness
trumped laziness and I decided to write my own
hardware enablement. Hurrah!

I (2) See
The I2C interface is a fairly standard way of
connecting microcontrollers to things. There are
several slightly different ways of doing it, but a
common way is to use two wires: a clock (SCL) and a
dataline (SDA). By cunning signalling, both can be
used to signify the beginning and end of
transmissions too. The Arduino has a library (the Wire
library) to take care of this for you, but it uses
hardwired pins. The trouble is that, although you can
have multiple devices on the I2C bus, there are limits,
and if you want to drive more than one display, you will
find they have a very limited range of addresses. For
these reasons, I decided to implement the protocol in
my library so I could use any pins I liked, and also to
reduce the overhead on having another library (Wire
isn’t that big, but it does contain a lot of stuff we won’t
need). For the master device (the Arduino in our case),
transmission of data goes like this:

Bring SCL and SDA HIGH.
Bring SDA and SCL LOW.
Load bit into SDA.
Pulse SCL (High then Low).
 … continue transmitting bits until end of byte.
Send control bit (SDA HIGH) and signal end of
transmission.
Bring SCL and SDA LOW.
Bring SCL and SDA HIGH.
The actual bits you are transmitting all follow this

procedure, so we can start off by writing the low-level
bits and then write higher level functions to send
bytes and commands etc.

Initially, it is useful to write this code directly into an
Arduino sketch – it keeps everything in one place and
makes it a bit easier to test. So, our Arduino functions
would look something like this:
void i2cStart()
{
 digitalWrite(dSCL, HIGH);
 digitalWrite(dSDA, HIGH);
 digitalWrite(dSDA, LOW);
 digitalWrite(dSCL, LOW);
}
void i2cStop()

ARDUINO HARDWARE
ENABLEMENT
Plug an OLED display into your Arduino, script a driver and learn
C++ library programming, all without requiring any experience.

 TUTORIAL

100

NICK VEITCH

You too can delight your
friends and confound your
enemies by writing custom
drivers for cheap displays!

WHY DO THIS?
• Learn how to plug

awesome displays into
cheap hardware and
code your own interface
using the Arduino IDE
and a smattering of
learner-level C++.

ARDUINO CODING

www.linuxvoice.com

{
 digitalWrite(dSCL, LOW);
 digitalWrite(dSDA, LOW);
 digitalWrite(dSCL, HIGH);
 digitalWrite(dSDA, HIGH);
}
void sendByte(unsigned char b)
{
 char i;
 for(i=0;i<8;i++)
 {

 if((b << i) & 0x80){
 digitalWrite(dSDA, HIGH);

 }else{
 digitalWrite(dSDA, LOW);

 }
 digitalWrite(dSCL, HIGH);
 digitalWrite(dSCL, LOW);

 }
 digitalWrite(dSDA, HIGH);
 digitalWrite(dSCL, HIGH);
 digitalWrite(dSCL, LOW);
}

This presupposes that in the main code somewhere
we define the pins (here called dSCL and dSDA) and
set them as outputs. The loop in the sendByte()
function merely uses a bitshift operator, <<, to iterate
through the bits in the byte supplied to the function,
and transmit them one at a time.

Now, to go any further than this, we need some
specifics about the device we are communicating
to. In this case, the OLED display uses the common
SSD1306 control chip. This is a multi-protocol chip,
though our hardware is hardwired to only supply a
write-only I2C interface. The address of the device
on the i2c bus is either 0x78 or 0x7A, which is set
via connecting a pin on the SSD1306 device. Since
these displays usually come on a board, you may
have a jumper (with the cheap hardware I have, it is
hardwired to be 0x78).

The address is important, as you need to signal this
on the I2C bus to get a device to listen (remember,
the bus is designed to have potential for more than
one occupant). You will also need to know what
commands you can and should send. For this, we
need to find the datasheet for the SSD1306. A quick
Google search should bring up some candidates, or
you can request one direct from the manufacturers.
A lot of the datasheet is not relevant to us because
we will be using only one of the connection modes.
What is highly relevant are the setup commands
though – we need to send these to get the display to
turn on and work correctly. To send a command we
have to initiate the bus, send the slave address, send
the control byte (telling the device we are writing to
it), then send the actual command byte and close
the bus again. We can wrap this up in a higher level
function like this:
void sendCmd(unsigned char cmd)
{

 i2cStart();
 sendByte(0x78); //Slave address,SA0=0
 sendByte(0x00); //write command
 sendByte(cmd);
 i2cStop();
}

The actual list of commands to initiate the display
is long and consists of things we don’t need to know
much about (the slew rate seems to be a function of
the size of the display, and there are various different
ways of addressing the memory). For the moment we
can just make an array out of the commands:
char init_codes[] {
 0xAE,0x00,0x10,0x40,0xB0,0x81,0xCF,0xA1,
 0xA6,0xA8,0x3F,0xC8,0xD3,0x00,0xD5,0x80,
 0xD9,0xF1,0xDA,0x12,0xDB,0x40,0x8D,0x14,
 0xAF
};
which we would declare in the main loop, and then
create a function to loop through sending these when
we want to initialise the display:
void init()
{
 for (i = 0;i < 25;i++) {
 sendCmd(init_codes[i])
 }
}

We now have enough code to bring up the display.
But how will we even know that it is on? We need to
stick something on it.

Addressing
The SSD1306 has three different modes of
addressing the display – a horizontal mode, a vertical
mode and a paged mode. The ‘pages’ are basically
lines 8-bits deep across the display, which will be very
useful for when we want to display characters.
However, the horizontal mode will be useful for things
like blanking the display.

Horizontal mode, it turns out, doesn’t mean what
you think it does. Each byte you send still corresponds
to a vertical slice of 8 pixels, it just means that when
you get to the end, the address pointer is updated
to the beginning of the next row (see diagram).
This means though that we can write 1024 bytes in

101

The breadboard view
shows why an Arduino
Nano is really very very
useful for working on this
sort of project – it just
slots right in.

CODING ARDUINO

www.linuxvoice.com102

sequence to fill up the whole screen, which is perfect
for a cls() type routine.

To do this we need to:
Send the commands to initiate horizontal mode.
Initiate the data connection.
Send 1024 bytes.
Close the connection.
For now, we can just build this in the main loop of

the Arduino code
void loop() {
char init_codes[] {
 0xAE,0x00,0x10,0x40,0xB0,0x81,0xCF,0xA1,
 0xA6,0xA8,0x3F,0xC8,0xD3,0x00,0xD5,0x80,
 0xD9,0xF1,0xDA,0x12,0xDB,0x40,0x8D,0x14,
 0xAF
};
init();
sendCmd(0x20); // send the command to initiate horizontal
mode
sendCmd(0x00);
i2cStart();
sendByte(0x78); // identify the slave device
sendByte(0x40); // signal that what follows is data rather than
commands
for (unsigned int n=0;n<512;n++)

{
 sendByte(0xAA);
 sendByte(0x55);

}
i2cStop();
delay(1000);
}

This is a useful way to prototype functions that you
may wish to develop – just bash them out in the main
code, experiment with rationalisations and shortcuts,
and then encapsulate them into a function.

Here we have initialised the display as discussed
before. Then we send the commands to the device
to set it into the horizontal addressing mode. To send
the stream of data, we initiate the I2C connection
and send the identifier byte (to address the correct
device), and indicate that we are writing data to the
display memory (0x40). Then we just send the bytes.

In this case, a chequerboard pattern). If you keep
writing after 1024 bytes, the address counters on the
SSD1306 will just reset and you will end up writing at
the beginning again. Now that we have verifiable code
that can be proved to work with the display, it is time
to look into libraries.

Oh, I C++
Arduino libraries are written in C++. This may seem
surprising and daunting to some, but it shouldn’t be
– the Arduino code you’re used to writing is basically
C++, albeit a version that hides a lot of the tricky stuff
and wraps everything else in a layer of simplification.
The point is, that for the most part, the actual code
writing part should feel familiar; it’s just the structures
surrounding it which will be new to some.

The simplest library consists of just two files. There
will be the .cpp file which contains the code itself, and
a .h or header file.To start with, we need to create a
directory in the place where user libraries live. This will
be (on nearly all Linux distros) in the path ~/Arduino/
libraries. The only exception is if you are in the habit
of running the Arduino IDE as root, which is very
naughty! The reason some people do this is because
then you don’t have to change permissions for some
of the devices used; consider instead following the
Linux instructions here: http://playground.arduino.
cc/Linux/All.

In the libraries directory, simply make a new
directory (I called mine evilOLED), then we can create
some files and directories
$ tree
.
 evilOLED.cpp
 evilOLED.h
 examples
 utils

The directories (utils and examples) we can forget
about for now. The first thing to do is open up your
favourite code editor and start editing the evilOLED.
cpp file. The very first thing we need to put in the file is
the include line, which adds this file’s own header:
#include “evilOLED.h”

The next important order of business is to create a
class (skip this paragraph if you already know what
that is!). A class is really like a special datatype. Think
of it like this: instead of defining an integer or a string,
we are going to define a display. Along with that we
have to provide the code for all of its interactions in
the form of functions. We also have to allocate space
for any variables and data that instances of the class
will need when they are created. The class isn’t an
instance, it is the recipe for creating one, in almost
the same way that the Arduino code knows that an
int is an integer, and what to do when creating one, or
adding or subtracting or printing one.

Our class is defined like this:
evilOLED::evilOLED(char sda, char scl)
{
 _sda = sda;

The fritzing diagram
showing the connections
for an Arduino Nano. It is
straightforward though –
just direct connections for
the power and the two pins
we use for I2C (in this case
D8 and D9).

ARDUINO CODING

www.linuxvoice.com 103

 _scl = scl;
 _col = 0x00;
 _row = 0x00;
 init();
 cls(0xff);
}

We can explain this a little bit. The constructor
is the first line. This is like a special function (with
no return type at all) which is called whenever an
instance of the class is first created. In it, we want
to put definitions for any special data we want the
instance to have, and any functions it should call. The
argument or parameters in the constructor are special
bits of data that will be passed in by the code creating
the instance. In this case, we want to specify which
pins we are going to use for communication.

The bit inside the braces (curly brackets { and }) is
the code that will run. The first two bits may seem
a little strange – we have taken the values passed
in by the constructor and copied them to new
variables (which haven’t even got a type!). Then we
set two more variables, and all of them begin with an
underscore. The underscore is the convention which
means that these variables are ‘private’ to the class –
that means that only functions belonging to that class
can see them – they can’t be read or changed by
any code outside of this class. We actually explicitly
declare this in the header, but we have more to do
here before we get on to that. The last two lines call
other functions of the class – we will have to transfer
them from the Arduino code we wrote, which should
be up by now on www.linuxvoice.com/code/lv012/
arduino.

They function are practically unchanged from the
Arduino code – they have just been updated to use
our new private variables, plus the function definitions
now begin with evilOLED::<name>, which declares
them as part of our class.

To complete this fairly minimal version of our library,
we also need to generate the header file. This is also
on www.linuxvoice.com/code/lv012/arduino. The
opening #ifndef statement is a common convention
which basically prevents the header file from being
parsed twice, as may happen on larger projects where
several code files may include it. The following block
of code, up until the #endif, will not be processed
more than once. For completeness we’ve include
the Arduino library and the pgmspace. These, as it
turns out, are not explicitly used by the header file,

but they are used in the main C++ file. It is a common
convention to put all the necessary includes in one
place, the header file, so the main code only has one
include in it – it just means it is easier to track things
down if you aren’t searching two files for it.

We have also included a #define statement for
the slave address of the display here. This is just an
example of something you may want to do in your
header file. As there is more than one possible value
for this, it is probably more useful to have it as a
variable rather than a compiled-in value, but it is also a
useful reminder of what the default value actually is.

The class definition that follows is what is called
a ‘prototype’. This outlines the parameters accepted
and returned by all the member functions (including
the constructor) as well as a list of the private data
or functions used by the code. Basically, to add your
function to the header, you can just copy and paste
it, then edit out the evilOLED:: prefix. There is no
functional code here, but this demonstrates how
the code works, and if well commented, can tell you
everything useful you need to know about the library.

The examples directory is where you will put any
complete sample code using your library, which
will then turn up in the relevant Arduino menu. It is
a good idea to include as much, well commented,
functionality as possible in these, as people tend not
to read the instructions!

To make sure your library is usable by the Arduino
IDE, you should put it where the rest of the libraries are.
This is usually ~/arduino/libraries but may depend on
how and where you installed it. The foolproof way is
to put the directory somewhere findable, then open up
the IDE. Create a new sketch and then choose Sketch
> Import Library > Add Library, and use the requester
to specify the location of your library directory. You
will find all the files are copied to wherever the library
storage for Arduino happens to be. Note that you
can continue to edit the library in situ – the code is
recompiled each time you compile source that refers
to it (uploading or checking sketches) so this can be a
handy way to test changes.

Nick Veitch has edited computer magazines for 1,000 years.
He now works at Canonical and collects gin bottles.

The best Arduino?
This is a small aside about the Arduino Nano, which I have
come to believe is the best model for prototyping on. The
reason is simply that it comes on a board, ready to plug
into a breadboard. All the pins are single pitch around the
edge so it doesn’t take up much room, and it still has the
very useful programming header on it if you need/want to
program it that way. Coincidentally, it is also quite cheap,
thus fulfilling my pinchfist proclivities.

The datasheet is useful,
even though a lot of it
doesn’t apply. there is
some info about other
modes you may care
to implement, such as
hardware scrolling!

