
CORETECHNOLOGY

www.linuxvoice.com66

What would you consider to be the
most important inventions of the
last 50 years? Genetic

engineering? Post-It Notes? The
Teletubbies? How about the Internet
Protocol? It underpins the entire internet
(obviously) and has found its way into cars,
fridges, televisions, smoke alarms, in fact the
entire “Internet of Things”.

Let’s start with the big picture, and talk
about protocol stacks. Consider the very
common case of a web server sending a
web page to a browser. The server and the
browser communicate with a protocol called
HTTP (Hyper Text Transfer Protocol). So the
web server builds an HTTP response packet,
which consists of the content of the web
page it’s sending, with an HTTP header
stuck on the front. This header contains the
information that the HTTP layer needs to do
its job. It’s in this header, for example, that
you’ll find the HTTP status code such as
200 (OK) or 404 (file not found).

Enter the TCP layer
Having assembled the packet, the browser
hands it down to the transport layer, TCP
(see Figure 1). The task of this layer is to
“guarantee” delivery of the packet to the
correct program (in this case, the web
browser) on the destination machine by
providing the illusion of a permanent “circuit”
connecting the server and the client. This
layer adds its own, rather complicated,
header to help it do its job. The TCP layer
doesn’t know anything about the data it’s
carrying. For example, it doesn’t distinguish
the HTTP header from the rest of the packet.
As far as the TCP layer is concerned, the
whole thing is just the “payload” it’s being
asked to deliver.

The TCP layer hands the packet down
to the IP layer, which is responsible for
routing packets across an interconnected
set of networks (an “internet”) to the correct
machine. The IP layer adds its own header,
and again, it regards the whole of the packet
handed to it from the layer above simply as
its payload.

There’s at least one more layer below that
before the packet actually hits the wire. The
detail here depends on what medium is
being used to actually transmit the packets;
assuming that it’s some form of Ethernet,
the IP datagram will get encapsulated
inside an Ethernet frame, with its own
header and its own destination address, as
I’ll discuss. (Though for a tongue-in-cheek
alternative, see RFC1149: A Standard for
the Transmission of IP Datagrams on Avian
Carriers.)

When the packet reaches its destination
(where your browser is running) it proceeds
back up the protocol stack, each layer
discarding its header before passing its
payload up to the layer above. Finally the
original HTTP packet is handed up to the

The Internet Protocol
The Internet Protocol is at the heart of – well – the internet. But what exactly does it do?

CORE
TECHNOLOGYA veteran Unix and Linux

enthusiast, Chris Brown has
written and delivered open
source training from New Delhi
to San Francisco, though not on
the same day.

browser which (after removing the header)
renders the page for you.

Each layer thinks of itself as talking
directly to its peer layer – the one at the
same level in the stack – at the other end.
The application layer talks to the application
layer, the TCP layer talks to the TCP layer,
and so on. In reality, of course, the data
flows down and up the protocol stacks.

IP addressing
Back in issues 6 and 7 I discussed the TCP
and UDP protocols in some detail, with
emphasis on the “sockets” API that provides
access to these protocols from our code. I
want to focus on the IP layer this month.
Typically, programmers do not interact
directly with this layer, although it is possible
to create a “raw” socket that lets you craft
your own transport layer header. Program
like ping, and some of the weirder forms of
nmap scan, use this technique. But we are
not really going to look at IP through a
programmer’s eyes.

To begin at the beginning, every
connection from a computer to an internet

Prise the back off Linux and find out what really makes it tick.

IPv6

You probably don’t need to be told that we’re
running out of IPv4 addresses. RIPE (the
organisation that allocates these things in Europe)
started allocating addresses from its last /8 block
two years ago (a /8 block is 2^24 addresses,
roughly 16 million, which sounds a lot but is
actually less than 0.5% of the IPv4 address space).

The number of addresses available in IPv6,
with its 128-bit addresses, is too big to get a
proper handle on. I just used two Post-It notes
working out that you could allocate the equivalent
of an entire IPv4 address space for every square
millimetre of the earth’s surface – in fact, you

could do it 100 million times over. Although IPv6
is on its way, it’s slow in arriving. You’ve been able
to build IPv6-only intranets with Linux for years.
The latest infographic from RIPE claims that
globally, more than 20,000 websites, 240 network
operators, and 10 home router vendors now offer
IPv6 products and services.

Nonetheless, I think we’re still some way away
from having full end-to-end IPv6 connectivity from
the average home user to the average website. I
keep thinking I’ll call my ISP and ask them… but
they’ll just tell me to reboot my router and see if
that fixes the problem…

CORETECHNOLOGY

www.linuxvoice.com 67

is allocated an IP address, which is 32 bits
long and is written in a format called “dotted
decimal notation” – you split the address
into four lots of 8 bits (called an octet),
write each octet’s value down as a decimal
number (giving a value between 0 and 255)
then stick dots in between. So you end
up with something like 104.28.7.18. This
address is logically split into two parts – a
network ID and a host ID. The network ID
is the piece that’s used for routing (getting
packets to the right network); the host ID
only comes into play once a packet has
reached the right network, when it’s used
for the final stage of delivery to the
destination machine.

What’s a subnet mask?
The division between the network piece and
the host piece is specified by the “subnet
mask”, which is also usually written in
dotted decimal notation. For example, a
subnet mask of 255.255.255.0 converted
to binary gives us 24 ones followed by 8
zeros, meaning that the top 24 bits of the IP
address are network ID, and the remaining 8
bits are the host ID. There’s a more compact
way of representing this. We might say that
a machine is on the network 192.168.1.0/24,
meaning that the top 24 bits of this (the
192.168.1 piece) specify the network and
the remaining 8 bits select the host.

Figure 3 shows a typical small internet.
Machines A, B, C and D are connected to the
upper network 192.168.0/24; machines P, Q,
and R are connected to the lower network
192.168.1/24. Additionally, machine S is
connected to both networks (it has two
network cards) and can route packets
between them. Finally, machine D has a
connection to the outside world.

In the early days of the internet every
single machine that used TCP/IP had a
globally unique IP address assigned to
it. We could establish direct end-to-end
connectivity between any two machines. But
the internet grew way beyond expectations
and we started running out of addresses.
So in 1996, the Internet Assigned Numbers
Authority designated three “private” address
blocks as follows:
10.0.0.0–10.255.255.255 (10/8 prefix)
172.16.0.0–172.31.255.255 (172.16/12
prefix)
192.168.0.0–192.168.255.255
(192.168/16 prefix)
The idea was that machines that only

needed to communicate within their own
private “intranet” could use IP addresses
from these private blocks and didn’t need
to apply for an address allocation from a
central registry. More than anything else,
this strategy has staved off the exhaustion
of IPv4 addresses, as countless corporate
networks around the world re-use these
private address blocks.

In our diagram, there is only one globally
unique IP address – that’s the 176.13.4.92
address of the outward-facing connection of
machine D.

The routing routine
So, what does the IP layer do, exactly? Well,
it has the job of delivering a packet to a
specified destination IP address. To figure
out how to send IP packets on their way,
each machine maintains a routing table.
Machines on “stub” networks, like machine P
in the diagram, only need to know two things
– which network they’re connected to
(192.168.1/24 in this case) and where to
send packets destined for other networks
(192.168.1.254 in this example); this is
usually called the default gateway.

If we examine the routing table of
machine P, we’ll see something like this:
$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Iface
0.0.0.0 192.168.1.254 0.0.0.0 UG eth0
192.168.1.0 0.0.0.0 255.255.255.0 U eth0
I’ll explain all this in a minute, but first let’s

Figure 1: As a packet passes down through the layers of a protocol stack, each layer’s header
forms part of the payload of the layer below.

An IP address is split into a network ID and a host ID. The “CIDR” notation shown here specifies the
boundary between the two pieces

Web server Web browser

HTTP Protocol

TCP Protocol

IP Protocol

Network

HTTP
Header Page

Page

Page

Page

HTTP
Header

HTTP
Header

HTTP
Header

TCP
Header

TCP
Header

TCP
Header

IP
Header

IP
Header

Ethernet
Header

HTTP
Header Page

Page

Page

Page

HTTP
Header

HTTP
Header

HTTP
Header

TCP
Header

TCP
Header

TCP
Header

IP
Header

IP
Header

Ethernet
Header

Subnet mask

IP address

Network ID Host ID

192.168.0.5/24

11111111 11111111 11111111 00000000

11000000 10101000 00000000 00000101

CORETECHNOLOGY

www.linuxvoice.com68

look at the routing table for machine A,
which has an extra entry because it needs
a route onto the lower network, so it might
look like this:
$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Iface
0.0.0.0 192.168.0.4 0.0.0.0 UG eth0
192.168.1.0 192.168.0.254 255.255.255.0 U eth0
192.168.0.0 0.0.0.0 255.255.255.0 U eth0

Here’s how it works. The IP layer works
through the entries in the routing table in
turn. For each one, it takes the packet’s
destination IP address, bit-wise ANDs it
with the value in the Genmask column and
compares it to the value in the Destination
column. If they match this is considered as
a potential route. If more than one entry in
the routing table matches, the most specific
route – the one with the longest Genmask
– wins.

So, taking the three entries in turn: the
first entry always matches, because any
destination IP address AND-ed with 0.0.0.0
is going to give 0.0.0.0. So this route will
be used if there isn’t a more specific match
– it says that 192.168.0.4 is our default
gateway. The second entry defines the
route onto the lower network; basically it
says “to reach the 192.168.1/24 network, go
via 192.168.0.254”. The third entry has no
gateway defined; it says that traffic to the
192.168.0/24 network doesn’t need to go via
a gateway because that’s the network we’re
actually connected to. In all three cases,
packets will go out via network interface
eth0. That’s a bit of a no-brainer because it’s
the only one we’ve got. Let’s take a look at

the routing table on machine S:
$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Iface
0.0.0.0 192.168.0.4 0.0.0.0 UG eth0
192.168.0.0 0.0.0.0 255.255.255.0 U eth0
192.168.1.0 0.0.0.0 255.255.255.0 U eth1

A careful examination of this (the last two
lines) shows that the machine has direct
connections to two networks, 192.168.0/24
(via its “upper” network connection eth0),
and 192.168.1/24 (via its lower connection
eth1).

To get a feel for how IP routing and packet
delivery works, let’s consider three routing
scenarios in turn:
1 Machine A to machine C.
2 Machine A to machine Q.
3 Machine A to a machine somewhere in

the outside world.

Machine A to machine C
This is the easy case, because the
destination address of the packet,
192.168.0.3, is on the same network as
machine A, as determined by the third entry
in machine A’s routing table. But we’re not
quite home and dry, because the packet
needs to be encapsulated into an Ethernet
frame for transmission, and we need to
know the Ethernet address of machine C.
Ethernet addresses are 48 bits long and are
written down as a group of 6 pairs of
hexadecimal digits, separated by colons, for
example 00:06:5B:BA:6E:FB. Ultimately, it’s
this address that’s used to get the packet to
the right machine.

Keep in mind though, that it’s pointless
addressing a packet to an Ethernet address
that isn’t on your network -- these addresses
are not used for routing. The Address
Resolution Protocol (ARP) is used to
discover the Ethernet address. Essentially,
machine A broadcasts an ARP request onto
its local network that says “Who is
192.168.0.3? Please tell 192.168.0.1”. All the
machines pick up and ponder this request
but only machine C, recognising its own IP
address, responds with the reply:
“192.168.0.3 is at 00:06:5B:BA:6E:FB”.
Finally, machine A is able to build an
Ethernet frame and send it out on the wire in
the reasonable expectation that it will reach
machine C.

Broadcasting an ARP request every single
time you want to send an IP datagram is
clearly not smart, so machine A will keep the
result for a while (60 seconds by default) in
its ARP cache. You can examine this cache
with the arp command:
$ arp -a
? (10.0.2.2) at 52:54:00:12:35:02 [ether] on eth0
You can also manually add and delete ARP

A broadcast ARP request is used to find the Ethernet address of a directly connected machine
whose IP address is known.

Figure 3: The internet in miniature – two networks connected by a gateway.

CORETECHNOLOGY

www.linuxvoice.com 69

cache entries with this command, though
there shouldn’t be any need to.
Machine A to machine Q
Our second scenario, machine A sending to
machine Q, is a little more complicated. The
destination IP address for machine Q is
192.168.1.2. From the second entry in
machine A’s routing table, it discovers that to
reach this network it needs to send the
packet to 192.168.0.254, the upper network
connection of machine S. So it will check its
ARP cache for an entry for this IP address,
and use the associated Ethernet address if it
finds one, or broadcast an ARP request if it
doesn’t. Note that machine A has absolutely
no idea what will happen to the packet after
it reaches machine S.

The focus of attention now turns to
machine S, the gateway. Tasked with
delivering the packet to 192.168.1.2, it
discovers from its routing table that one
of its network interfaces (eth1) is directly
connected to that network. So it will
broadcast an ARP request on eth1 to get an
Ethernet address for machine Q, and finally
send the packet to its destination.

Machine A to the outside world
In our final routing scenario, machine A
wants to send a packet to a machine out in

the internet -- perhaps to Linux Voice’s web
server at 104.28.6.18. Machine A quickly
discovers that its only hope is to go via its

default gateway (machine D at 192.168.0.4).
Now we haven’t looked at machine D’s
routing table, but it will in turn discover that
the packet needs to go out on the
176.13.4.92 interface to its own default
gateway -- a machine operated by the site’s
Internet service provider.

But there’s a problem. Sending the
packet out with a destination address
of 104.28.6.18 and a source address of
192.168.0.1 will work fine, but getting a reply
back is a different matter: 192.168.0.1 is a
private address; you can’t route packets to it
across the internet.

So here’s what happens. Machine S picks
an unused TCP port on its outward-facing
interface. Suppose it picks port 13348. It
then re-writes the SOURCE IP address and
port number on the packet to be 176.13.4.92
and 13348, and sends the packet on to Linux
Voice’s web server. This server thinks the
request originated at machine S and sends
the reply back there; that is, to 176.13.4.92
port 13348. Machine S, meanwhile, has
remembered the IP address and port
number that this request originally came
from – ie, machine A. So it now re-writes the
DESTINATION IP address and port number
of the reply packet and sends it back to
machine A.

This trick is known as NAT (Network
Address Translation) and is fundamental to
how machines on private internal networks

can interact with the outside world. If you
browse the web from home, your broadband
router does this on every single packet
you send. Note that machine A has no
idea that NAT is taking place – as far as
it’s concerned, it’s sending the packet to
machine S simply because it’s the default
gateway to the outside world.

NAT is, in a sense, extending the IP
address space by using the port number
as part of the address. This form of NAT
is sometimes called IP masquerading,
because it hides the internal structure
of our network from the outside world. It
only works when a network connection is
initiated from a machine within the local
intranet. A web browser running somewhere
“out there” cannot connect to a web server
running on our intranet. In this sense, NAT
offers a kind of firewall, protecting our
systems from external attack.

So… if you get the impression that all
this routing stuff can get complicated…
well, you’re right. But keep in mind that the
operations I’ve described occur thousands
of times on maybe a dozen machines, just
for a single visit to a website. Long live IP!

The ip command is the main administrative
tool for things down at the IP layer. It’s
intended to replace commands like ifconfig,
route and arp. As such, it’s a bit of a
jack-of-all-trades, with an extensive
command syntax. Commands are basically
of the form:
ip object action
where the objects you can perform actions
on include addresses, network interfaces
(ip calls them links), arp cache entries, and
routes. The actions you can perform depend
on the object you’re operating on, but
typically you can show, add or delete them.
Here are a few examples:

To show all addresses assigned to all
interfaces (roughly analogous to the old
ifconfig -a):
$ ip address show

To list just the IPv6 addresses assigned
to eth0:
$ ip -family inet6 address show dev eth0

To show the routing table (similar to
route -n):
$ ip route show

To add the static route from machine A to
the bottom network in our example:
$ sudo ip route add 192.168.1.0/24 via
192.168.0.254 dev eth0
…and to delete it again:

Command of the month: ip
$ sudo ip route del 192.168.1.0/24

The help option of the command makes
it, to some extent, self-documenting. For
example:
$ ip help
will give you a list of the object you can
operate on, and drilling down a level further:
$ ip route help
will show you the actions you can perform
on a route.

I get the impression that the ip command
hasn’t gained quite the level of adoption that
it perhaps deserves, a result (I suspect) of its
extensive command syntax, and the inertia
of the sysadmin community

“NAT is fundamental to how machines on private
internal networks interact with the outside world.”

So long and thanks for all the fish
I’ve decided to stop writing for Linux Voice,
as part of a process that I am told is called
“retirement”. So this will be my last piece. I’d
like to thank the Editorial Team for offering me
the opportunity over the last months, and wish
them every success as they take the magazine
through into its second year. Thanks to all of
you who have read what I’ve written – that’s
what makes it all worthwhile. Oh, and the
cheques of course.

