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What would you consider to be the
most important inventions of the 
last 50 years? Genetic 

engineering? Post-It Notes? The 
Teletubbies? How about the Internet 
Protocol? It underpins the entire internet 
(obviously) and has found its way into cars, 
fridges, televisions, smoke alarms, in fact the 
entire “Internet of Things”.

Let’s start with the big picture, and talk 
about protocol stacks. Consider the very 
common case of a web server sending a 
web page to a browser. The server and the 
browser communicate with a protocol called 
HTTP (Hyper Text Transfer Protocol). So the 
web server builds an HTTP response packet, 
which consists of the content of the web 
page it’s sending, with an HTTP header 
stuck on the front. This header contains the 
information that the HTTP layer needs to do 
its job. It’s in this header, for example, that 
you’ll find the HTTP status code such as 
200 (OK) or 404 (file not found).

Enter the TCP layer
Having assembled the packet, the browser
hands it down to the transport layer, TCP 
(see Figure 1). The task of this layer is to 
“guarantee” delivery of the packet to the 
correct program (in this case, the web 
browser) on the destination machine  by 
providing the illusion of a permanent “circuit” 
connecting the server and the client. This 
layer adds its own, rather complicated, 
header to help it do its job. The TCP layer 
doesn’t know anything about the data it’s 
carrying. For example, it doesn’t distinguish 
the HTTP header from the rest of the packet. 
As far as the TCP layer is concerned, the 
whole thing is just the “payload” it’s being 
asked to deliver.

The TCP layer hands the packet down 
to the IP layer, which is responsible for 
routing packets across an interconnected 
set of networks (an “internet”) to the correct 
machine. The IP layer adds its own header, 
and again, it regards the whole of the packet 
handed to it from the layer above simply as 
its payload.

There’s at least one more layer below that 
before the packet actually hits the wire. The 
detail here depends on what medium is 
being used to actually transmit the packets; 
assuming that it’s some form of Ethernet, 
the IP datagram will get encapsulated 
inside an Ethernet frame, with its own 
header and its own destination address, as 
I’ll discuss. (Though for a tongue-in-cheek 
alternative, see RFC1149: A Standard for 
the Transmission of IP Datagrams on Avian 
Carriers.)

When the packet reaches its destination 
(where your browser is running) it proceeds 
back up the protocol stack, each layer 
discarding its header before passing its 
payload up to the layer above. Finally the 
original HTTP packet is handed up to the 
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browser which (after removing the header)
renders the page for you.

Each layer thinks of itself as talking 
directly to its peer layer – the one at the 
same level in the stack – at the other end. 
The application layer talks to the application 
layer, the TCP layer talks to the TCP layer, 
and so on. In reality, of course, the data 
flows down and up the protocol stacks.

IP addressing
Back in issues 6 and 7 I discussed the TCP
and UDP protocols in some detail, with 
emphasis on the “sockets” API that provides 
access to these protocols from our code. I 
want to focus on the IP layer this month. 
Typically, programmers do not interact 
directly with this layer, although it is possible 
to create a “raw” socket that lets you craft 
your own transport layer header. Program 
like ping, and some of the weirder forms of 
nmap scan, use this technique. But we are 
not really going to look at IP through a 
programmer’s eyes.

To begin at the beginning, every 
connection from a computer to an internet 
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You probably don’t need to be told that we’re 
running out of IPv4 addresses. RIPE (the 
organisation that allocates these things in Europe) 
started allocating addresses from its last /8 block 
two years ago (a /8 block is 2^24 addresses, 
roughly 16 million, which sounds a lot but is 
actually less than 0.5% of the IPv4 address space).

The number of addresses available in IPv6, 
with its 128-bit addresses, is too big to get a 
proper handle on. I just used two Post-It notes 
working out that you could allocate the equivalent 
of an entire IPv4 address space for every square 
millimetre of the earth’s surface – in fact, you 

could do it 100 million times over. Although IPv6 
is on its way, it’s slow in arriving. You’ve been able 
to build IPv6-only intranets with Linux for years. 
The latest infographic from RIPE claims that 
globally, more than 20,000 websites, 240 network 
operators, and 10 home router vendors now offer 
IPv6 products and services. 

Nonetheless, I think we’re still some way away 
from having full end-to-end IPv6 connectivity from 
the average home user to the average website. I 
keep thinking I’ll call my ISP and ask them… but 
they’ll just tell me to reboot my router and see if 
that fixes the problem…
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is allocated an IP address, which is 32 bits
long and is written in a format called “dotted 
decimal notation” – you split the address 
into four lots of 8 bits (called an octet), 
write each octet’s value down as a decimal 
number (giving a value between 0 and 255) 
then stick dots in between. So you end 
up with something like 104.28.7.18. This 
address is logically split into two parts – a 
network ID and a host ID. The network ID 
is the piece that’s used for routing (getting 
packets to the right network); the host ID 
only comes into play once a packet has 
reached the right network, when it’s used  
for the final stage of delivery to the 
destination machine.

What’s a subnet mask?
The division between the network piece and
the host piece is specified by the “subnet 
mask”, which is also usually written in 
dotted decimal notation. For example, a 
subnet mask of 255.255.255.0 converted 
to binary gives us 24 ones followed by 8 
zeros, meaning that the top 24 bits of the IP 
address are network ID, and the remaining 8 
bits are the host ID. There’s a more compact 
way of representing this. We might say that 
a machine is on the network 192.168.1.0/24, 
meaning that the top 24 bits of this (the 
192.168.1 piece) specify the network and 
the remaining 8 bits select the host.  

Figure 3 shows a typical small internet. 
Machines A, B, C and D are connected to the 
upper network 192.168.0/24; machines P, Q, 
and R are connected to the lower network 
192.168.1/24. Additionally, machine S is 
connected to both networks (it has two 
network cards) and can route packets
between them. Finally, machine D has a 
connection to the outside world.

In the early days of the internet every 
single machine that used TCP/IP had a 
globally unique IP address assigned to 
it. We could establish direct end-to-end 
connectivity between any two machines. But 
the internet grew way beyond expectations 
and we started running out of addresses. 
So in 1996, the Internet Assigned Numbers 
Authority designated three “private” address 
blocks as follows:
10.0.0.0–10.255.255.255  (10/8 prefix)
172.16.0.0–172.31.255.255  (172.16/12 
prefix)
192.168.0.0–192.168.255.255 
(192.168/16 prefix)
The idea was that machines that only 

needed to communicate within their own
private “intranet” could use IP addresses 
from these private blocks and didn’t need 
to apply for an address allocation from a 
central registry. More than anything else, 
this strategy has staved off the exhaustion 
of IPv4 addresses, as countless corporate 
networks around the world re-use these 
private address blocks.

In our diagram, there is only one globally 
unique IP address – that’s the 176.13.4.92 
address of the outward-facing connection of 
machine D.

The routing routine
So, what does the IP layer do, exactly? Well,
it has the job of delivering a packet to a 
specified destination IP address. To figure 
out how to send IP packets on their way, 
each machine maintains a routing table. 
Machines on “stub” networks, like machine P 
in the diagram, only need to know two things 
– which network they’re connected to 
(192.168.1/24 in this case) and where to 
send packets destined for other networks 
(192.168.1.254 in this example); this is 
usually called the default gateway.

If we examine the routing table of 
machine P, we’ll see something like this:
$ route -n
Kernel IP routing table
Destination    Gateway        Genmask        Flags Iface
0.0.0.0        192.168.1.254  0.0.0.0        UG    eth0
192.168.1.0    0.0.0.0        255.255.255.0  U     eth0
I’ll explain all this in a minute, but first let’s

Figure 1: As a packet passes down through the layers of a protocol stack, each layer’s header 
forms part of the payload of the layer below.

An IP address is split into a network ID and a host ID. The “CIDR” notation shown here specifies the 
boundary between the two pieces
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look at the routing table for machine A,
which has an extra entry because it needs 
a route onto the lower network, so it might 
look like this:
$ route -n
Kernel IP routing table
Destination    Gateway        Genmask        Flags Iface
0.0.0.0        192.168.0.4    0.0.0.0        UG    eth0
192.168.1.0    192.168.0.254  255.255.255.0  U eth0
192.168.0.0    0.0.0.0        255.255.255.0  U     eth0

Here’s how it works. The IP layer works
through the entries in the routing table in 
turn. For each one, it takes the packet’s 
destination IP address, bit-wise ANDs it 
with the value in the Genmask column and 
compares it to the value in the Destination 
column. If they match this is considered as 
a potential route. If more than one entry in 
the routing table matches, the most specific 
route – the one with the longest Genmask 
– wins.

So, taking the three entries in turn: the 
first entry always matches, because any 
destination IP address AND-ed with 0.0.0.0 
is going to give 0.0.0.0. So this route will 
be used if there isn’t a more specific match 
– it says that 192.168.0.4 is our default 
gateway. The second entry defines the 
route onto the lower network; basically it 
says “to reach the 192.168.1/24 network, go 
via 192.168.0.254”. The third entry has no 
gateway defined; it says that traffic to the 
192.168.0/24 network doesn’t need to go via 
a gateway because that’s the network we’re 
actually connected to. In all three cases, 
packets will go out via network interface 
eth0. That’s a bit of a no-brainer because it’s 
the only one we’ve got. Let’s take a look at 

the routing table on machine S:
$ route -n
Kernel IP routing table
Destination    Gateway        Genmask        Flags Iface
0.0.0.0        192.168.0.4    0.0.0.0        UG    eth0
192.168.0.0    0.0.0.0        255.255.255.0  U     eth0
192.168.1.0    0.0.0.0        255.255.255.0  U     eth1

A careful examination of this (the last two
lines) shows that the machine has direct 
connections to two networks, 192.168.0/24 
(via its “upper” network connection eth0), 
and 192.168.1/24 (via its lower connection 
eth1).

To get a feel for how IP routing and packet 
delivery works, let’s consider three routing 
scenarios in turn:
1 Machine A to machine C.
2 Machine A to machine Q.
3 Machine A to a machine somewhere in

the outside world.

Machine A to machine C
This is the easy case, because the
destination address of the packet, 
192.168.0.3, is on the same network as 
machine A, as determined by the third entry 
in machine A’s routing table. But we’re not 
quite home and dry, because the packet 
needs to be encapsulated into an Ethernet 
frame for transmission, and we need to 
know the Ethernet address of machine C. 
Ethernet addresses are 48 bits long and are 
written down as a group of 6 pairs of 
hexadecimal digits, separated by colons, for 
example 00:06:5B:BA:6E:FB. Ultimately, it’s 
this address that’s used to get the packet to 
the right machine. 

Keep in mind though, that it’s pointless 
addressing a packet to an Ethernet address 
that isn’t on your network -- these addresses 
are not used for routing. The Address 
Resolution Protocol (ARP) is used to 
discover the Ethernet address. Essentially, 
machine A broadcasts an ARP request onto 
its local network that says “Who is 
192.168.0.3? Please tell 192.168.0.1”. All the 
machines pick up and ponder this request 
but only machine C, recognising its own IP 
address, responds with the reply: 
“192.168.0.3 is at 00:06:5B:BA:6E:FB”. 
Finally, machine A is able to build an 
Ethernet frame and send it out on the wire in 
the reasonable expectation that it will reach 
machine C.

Broadcasting an ARP request every single 
time you want to send an IP datagram is 
clearly not smart, so machine A will keep the 
result for a while (60 seconds by default) in 
its ARP cache. You can examine this cache 
with the arp command:
$ arp -a
? (10.0.2.2) at 52:54:00:12:35:02 [ether] on eth0
You can also manually add and delete ARP

A broadcast ARP request is used to find the Ethernet address of a directly connected machine 
whose IP address is known.

Figure 3: The internet in miniature – two networks connected by a gateway.
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cache entries with this command, though
there shouldn’t be any need to.
Machine A to machine Q
Our second scenario, machine A sending to
machine Q, is a little more complicated. The 
destination IP address for machine Q is 
192.168.1.2. From the second entry in 
machine A’s routing table, it discovers that to 
reach this network it needs to send the 
packet to 192.168.0.254, the upper network 
connection of machine S. So it will check its 
ARP cache for an entry for this IP address, 
and use the associated Ethernet address if it 
finds one, or broadcast an ARP request if it 
doesn’t. Note that machine A has absolutely 
no idea what will happen to the packet after 
it reaches machine S.

The focus of attention now turns to 
machine S, the gateway. Tasked with 
delivering the packet to 192.168.1.2, it 
discovers from its routing table that one 
of its network interfaces (eth1) is directly 
connected to that network. So it will 
broadcast an ARP request on eth1 to get an 
Ethernet address for machine Q, and finally 
send the packet to its destination.

Machine A to the outside world
In our final routing scenario, machine A
wants to send a packet to a machine out in 

the internet -- perhaps to Linux Voice’s web 
server at 104.28.6.18. Machine A quickly 
discovers that its only hope is to go via its 

default gateway (machine D at 192.168.0.4). 
Now we haven’t looked at machine D’s 
routing table, but it will in turn discover that 
the packet needs to go out on the 
176.13.4.92 interface to its own default 
gateway -- a machine operated by the site’s 
Internet service provider.

But there’s a problem. Sending the 
packet out with a destination address 
of 104.28.6.18 and a source address of 
192.168.0.1 will work fine, but getting a reply 
back is a different matter: 192.168.0.1 is a 
private address; you can’t route packets to it 
across the internet.

So here’s what happens. Machine S picks 
an unused TCP port on its outward-facing 
interface. Suppose it picks port 13348. It 
then re-writes the SOURCE IP address and 
port number on the packet to be 176.13.4.92 
and 13348, and sends the packet on to Linux 
Voice’s web server. This server thinks the 
request originated at machine S and sends 
the reply back there; that is, to 176.13.4.92 
port 13348. Machine S, meanwhile, has 
remembered the IP address and port 
number that this request originally came 
from – ie, machine A. So it now re-writes the 
DESTINATION IP address and port number 
of the reply packet and sends it back to 
machine A.

This trick is known as NAT (Network 
Address Translation) and is fundamental to 
how machines on private internal networks 

can interact with the outside world. If you 
browse the web from home, your broadband 
router does this on every single packet 
you send. Note that machine A has no 
idea that NAT is taking place – as far as 
it’s concerned, it’s sending the packet to 
machine S simply because it’s the default 
gateway to the outside world.

NAT is, in a sense, extending the IP 
address space by using the port number 
as part of the address. This form of NAT 
is sometimes called IP masquerading, 
because it hides the internal structure 
of our network from the outside world. It 
only works when a network connection is 
initiated from a machine within the local 
intranet. A web browser running somewhere 
“out there” cannot connect to a web server 
running on our intranet. In this sense, NAT 
offers a kind of firewall, protecting our 
systems from external attack.

So… if you get the impression that all 
this routing stuff can get complicated… 
well, you’re right. But keep in mind that the 
operations I’ve described occur thousands 
of times on maybe a dozen machines, just 
for a single visit to a website. Long live IP!

The ip command is the main administrative
tool for things down at the IP layer. It’s 
intended to replace commands like ifconfig, 
route and arp. As such, it’s a bit of a 
jack-of-all-trades, with an extensive 
command syntax. Commands are basically 
of the form:
# ip object action
where the objects you can perform actions
on include addresses, network interfaces 
(ip calls them links), arp cache entries, and 
routes. The actions you can perform depend 
on the object you’re operating on, but 
typically you can show, add or delete them. 
Here are a few examples:

To show all addresses assigned to all
interfaces (roughly analogous to the old 
ifconfig -a):
$ ip address show

To list just the IPv6 addresses assigned
to eth0:
$ ip -family inet6 address show dev eth0

To show the routing table (similar to
route -n):
$ ip route show

To add the static route from machine A to
the bottom network in our example:
$ sudo ip route add 192.168.1.0/24 via 
192.168.0.254 dev eth0
…and to delete it again:

Command of the month: ip
$ sudo ip route del 192.168.1.0/24

The help option of the command makes
it, to some extent, self-documenting. For 
example:
$ ip help
will give you a list of the object you can
operate on, and drilling down a level further:
$ ip route help
will show you the actions you can perform
on a route.

I get the impression that the ip command 
hasn’t gained quite the level of adoption that 
it perhaps deserves, a result (I suspect) of its 
extensive command syntax, and the inertia 
of the sysadmin community

“NAT is fundamental to how machines on private 
internal networks interact with the outside world.”

So long and thanks for all the fish
I’ve decided to stop writing for Linux Voice, 
as part of a process that I am told is called 
“retirement”. So this will be my last piece. I’d 
like to thank the Editorial Team for offering me 
the opportunity over the last months, and wish 
them every success as they take the magazine 
through into its second year. Thanks to all of 
you who have read what I’ve written – that’s 
what makes it all worthwhile. Oh, and the 
cheques of course.


