
www.linuxvoice.com

FEATURE MALWARE

36

L inux is generally considered to be virus-free for
all practical purposes. No major distros ship
with anti-virus software running, and this is not

considered a problem. Most Linux users never install
any specific security software, and also never run into
any issues. However, as Linux becomes more popular,
it also becomes a more attractive target for malware
creators. In 2013, we saw the release of the first major
piece of malware targeting Linux desktop users in the
shape of the Hand of Thief banking trojan. In 2014, the
trend has continued with several major Linux malware

stories in the news. Is it time to rethink the maxim that
Linux is secure?

Trojans are pieces of software that hide from the
user and steal data from within. Unlike viruses, they
don’t usually have a mechanism for self-replicating, so
they require the user to be tricked into installing them.
They’re a major problem for people who download
software from dubious internet sites. Usually, they
attack Windows, but Hand of Thief goes after Linux
users. Hand Of Thief is designed to steal information
from web browser sessions, specifically login

Open source software isn’t immune
to viruses and trojans, but

Ben Everard isn’t
panicking yet.

LINUX MALWARE

MALWARE FEATURE

www.linuxvoice.com 37

information for internet banking. It can grab data from
HTML forms, and other details from the web browser,
and relay them back to the attacker. It’s also reported
to be able to prevent users from accessing anti-virus
sites in order to make it harder for them to identify an
infection. The Linux version of this trojan has been
offered for sale in Russian malware forums for an
amount in the region of thousands of pounds, so
some people are obviously keen to target Linux users .

Despite being quite powerful once it’s installed,
Hand of Thief doesn’t have a good method of
infection. It requires the user to be tricked into
installing it manually. This sort of thing is quite familiar
to Windows users. For example, many people have
received bogus phone calls from people claiming to
work for Microsoft saying something along the lines
of, ‘we have detected a problem with your computer
and you need to install some software to fix it’. They
will then talk the unsuspecting user into downloading
and installing some trojan. This sort of thing is unlikely
to work with Linux users both because they tend to be
more knowledgeable about computing and because
most users would be suspicious of any software that
doesn’t come from their package manager.

The hard part of Linux malware isn’t controlling the
system once you’re in; it’s infecting the system in the
first place. This doesn’t
mean that we Linux
users can disregard
malware completely
though. In 2014 we
found that we too were
vulnerable to bugs that
allow rapid infection of a large number of machines.

Shellshocked
A code execution bug in Bash may not immediately
seem like a big problem. After all, code execution is
the entire point of a shell. However, Bash is used to
span new sessions in when generating web pages
under some server setups. Shellshock – a Bash code
execution vulnerability announced in September 2014
– allowed attackers to execute code on a server by
sending specially crafted HTTP requests that
exploited this session spawning.

Within a few hours of Shellshock’s announcement,
malware writers had adapted their code and were
scanning huge swathes of the internet for vulnerable
servers, trying to infect them using this as a vector.

We have a couple of servers at Linux Voice: one for
the website, and one for our internal use. These both
run CentOS and were vulnerable to Shellshock (but

our server setup wouldn’t
allow remote execution).
We patched them
quickly, and didn’t have
any problems. However,
we could see all the
attempts to exploit us,

and we kept track of the code that attackers were
trying to run on our servers. The vast majority tried to
use the vulnerability to use wget to download some
malware onto our server. Seeing these, we grabbed
the malware to see what people were trying to run.

All of the malware that targeted us tried to enlist
our servers into Distributed Denial of Service (DDOS)
botnets. There were bots written in Perl, Python and
C (sent as source code to be compiled on the server),
but they all worked in roughly the same way.

An important part of any botnet is the command
and control setup. This is the mechanism that enables

“The hard part of Linux malware
isn’t controlling the system; it’s
infecting it in the first place.”

After the Shellshock news,
crackers tried to exploit
our servers; helpfully,
they furnished us with
commented source code
to their malware. It made
analysis much easier.

You can view a map of DDOS attacks as they happen at
www.digitalattackmap.com, and even scroll back to big
attacks in the past.

Embedded malware Inherent insecurity
Embedded devices pose a new type of threat, and one
that could be hard to combat unless there’s a radical
rethink of the way embedded software is maintained.
In the past, devices have shipped with software pre-
installed, and normally left with the same software for
their entire lifetime. This means few embedded devices
ever get patched against bugs, few even have their default
passwords changed.

Linux can be secure, but it isn’t automatically. Unless
manufacturers start taking security seriously, and enable
users to update their devices, then the internet of things
will continue to be an increasingly attractive target for
malware developers, regardless of what OS is running it.

www.linuxvoice.com

FEATURE MALWARE

38

Only about 30% of Android
devices are running the
latest version of the OS,
which means many are
vulnerable to known
security bugs.

and the command is the command that should be sent. For
example, if you
want to tell all the clients with the nickname starting with N, to
send you
the help message, you type in the channel:
 !N* HELP
That will send you a list of all the commands. You can also
specify an
astrick alone to make all client do a specific command:
 !* SH uname -a
There are a number of commands that can be sent to the client:
 TSUNAMI <target> <secs> = A PUSH+ACK flooder
 PAN <target> <port> <secs> = A SYN flooder
 UDP <target> <port> <secs> = An UDP flooder
 UNKNOWN <target> <secs> = Another non-spoof udp
flooder
 NICK <nick> = Changes the nick of the client
 SERVER <server> = Changes servers
 GETSPOOFS = Gets the current spoofing
 SPOOFS <subnet> = Changes spoofing to a subnet
 DISABLE = Disables all packeting from this bot
 ENABLE = Enables all packeting from this bot
 KILL = Kills the knight
 GET <http address> <save as> = Downloads a file off the web
 VERSION = Requests version of knight
 KILLALL = Kills all current packeting
 HELP = Displays this
 IRC <command> = Sends this command to the server
 SH <command> = Executes a command

By getting all the bots to connect to a single
channel, and allowing wildcards in the commands, the
controllers can easily launch an attack using a large
number of infected computers – this shows that the
bot is designed for DDOSing.

The SH command gives the controller the power to
execute arbitrary code, so the bots could be used for
more than DDOSing even though this appears to be
their primary purpose. Amassing network bandwidth
is usually the aim of server malware.

The Active Threat Level Analysis System (ATLAS)
run by Arbour networks monitors DDOS attacks
around the world through ISPs sharing their data (see

the attacker to communicate with the bots (and
ideally with lots of bots concurrently), but at the same
time allows the attacker to remain untraceable when
the malware gets discovered.

All the bots that we saw used IRC for this. The
bots included the details of servers, channels and
passwords to connect with. As soon as they ran, they
connected to a particular IRC channel, which they
listened to, then they acted depending on what was
sent on the channel. The people running the botnet
could then connect to the same channel through an
anonymising proxy and be untraceable.

Helpfully, all the bots were well commented with
instructions for use. Here’s the comments describing
the IRC commands for one bot:
The syntax is:
 !<nick> <command>
You send this message to the channel that is defined later in this
code.
Where <nick> is the nickname of the client (which can include
wildcards)

Internet of Things When everything is connected, everything is a target
More and more things besides desktop and server
computers are being connected to the internet,
and anything connected to the internet can get
malware. Phones are the most visible aspect of this
internet of things (see Android boxout, below), but
they’re not the only type of device.

Routers and ADSL modems pose a particularly
attractive target to malware developers. They’re
usually left switched on 24 hours a day and
permanently connected to the internet, and they sit
between people browsing the web and the internet
itself, so they’re perfectly placed for performing
man-in-the-middle attacks.

The first major attack of this type, known
as Hydra, happened in 2008. Hydra was an IRC
controlled worm that infected Linux systems
running on the MIPS architecture (as many routers

do) using both a brute force password guesser and
an authentication bypass exploit.

Hydra itself wasn’t particularly malicious.
Infected routers were just used to infect more
routers. However, there are many pieces of malware
that have since been built based on the Hydra code
which are more malicious.

Not all attacks on routers need malware though.
One reason for targeting routers is to launch man-
in-the-middle attacks people browsing the web, and
this can be done quite effectively by altering the
router’s Domain Name System (DNS) settings. By
altering these, an attacker can send all of a router’s
data through a machine that the attacker controls
allowing them to intercept – and change – any
of the data. Recently, attackers have used this to
target banks in Brazil and Eastern Europe.

The internet of things is rapidly expanding, and
there’s seemingly no end to the range of devices
some manufacturers try to connect to the internet.
It goes far beyond routers to more mundane items
like televisions and fridges. Although these aren’t
positioned on the network in such a way as to
allow them to run man-in-the-middle attacks like
compromised routers can, they could still be used
in DDOS botnets.

The trend for embedded Linux devices is
increasing, and they’re becoming a more and
more attractive target for malware. However, few
manufacturers make it easy to keep software up
to date, and even fewer users actually do. This
means that security bugs often sit around unfixed
for years. As we saw with Shellshock, attackers can
quickly exploit these.

Percentage of Android devices by version

2.2 0.5%
2.3 9.1%
4.0 7.8%
4.1 21.3%
4.2 20.4%
4.3 7.0%
4.4 33.9%

MALWARE FEATURE

www.linuxvoice.com 39

Many routers, like this one,
can be configured through
an HTML interface. This
potentially makes them
vulnerable to cross-site
request forgery attacks
(CSRF).

Android Malware Viruses in your pocket
Android – the world’s most popular smartphone operating
system – is also a distribution of Linux and it s useful case
study for how malware can affect this OS. On the desktop,
Linux is used much less than Windows or Mac OS X, and
has far fewer problems with malware. On phones, Linux (as
Android) has a much larger market share than any of the
competitors (around 85% of all smartphone users are on
Android), and also has the majority of malware (around 97%
of smartphone malware is on Android).

The situation isn’t as simple as it may first appear
though. Smartphone software is typically installed through
app stores. Android is the only popular platform that allows
appstores other than its own, and it’s on these third-party
app stores that most of the malware exists. That’s not to
say there isn’t any malware on Google Play Store, but that
it’s a small proportion of the overall situation.

https://atlas.arbor.net for more information). In 2012,
the largest attack reported by Atlas used a peak
bandwidth of 100Gbps. By 2014, that had increased
to 325Gbps with attacks over 100Gbps occurring
almost every month. In other words, DDOSing is
becoming big business, and attackers need larger and
larger botnets in order to keep up with the
competition. Shellshock provided one such source of
new servers, but every vulnerability that can be
exploited in this way will be. These botnets are then
rented out (often by the hour) to whoever has a desire
to take a site offline.

Another common goal of malware on Linux servers
is as a vector to infect other machines (typically ones
running Windows). In this scenario, when a Linux
web server is compromised, the attackers then use
it to deliver malware to people who visit the websites
hosted on the server through so-called drive-by
downloads.

Advanced Persistent Threats
Late in 2014, news surfaced of a newly discovered
Linux component of the Turla Advanced Persistent
Threat (APT). APTs are targeted malware that’s
designed to get into an organisation and stay there
allowing attackers to steal large amounts of data, or
monitor activity for a long time. This is the sort of
malware used in industrial espionage, or by nation-
state spies.

Turla is a suite of APT malware that’s been known
about for some time. It’s thought to be linked to the
Russian government, and has been used to spy
on governments and militaries around the world.
However, up until now, all known components have
targeted Windows.

We haven’t been able to get hold of a copy of
Turla to analyse. However, Turla is based on an older
backdoor called cd00r developed by Phenoelit – Turla
uses the same method used by cd00r to stay invisible
to normal socket monitoring tools while still being
contactable from outside for example. A normal TCP
connection starts with a three-way handshake. First,
the client sends a SYN packet. The server then sends

a SYN-ACK packet, and finally, the client responds
with an ACK packet. At the end of this handshake,
both machines know that they’re communicating with
a machine that’s switched on and working, so they
can then start to transfer real data.

From a network security point of view, this means
that a computer can always tell which ports on a
server are open by sending SYN packets. If they get
a SYN-ACK in response then they know that some
software is listening on that port. On the server
side, Linux netstat or ss can be used to show which
processes are using a particular port.

Cd00r doesn’t listen on a port in a normal way.
It doesn’t respond to SYN packets with SYN-ACK
packets. Instead, it sniffs packages that go to a range
of ports, and looks for SYN packets being sent to
several specified ports in order. For example, the code
to trigger cd00r could be SYN packets to port 55, 74,
12, 90 then 45. Once it detected this pattern of SYN
packets, it would trigger a piece of code. This is know
as port knocking. Turla works in a similar way, but
instead of listening for a pattern of SYN packets, it
listens for special values in the SYN packets.

This method has allowed Turla to remain
undiscovered on Linux for at least four years. If you
fancy having a look at how Turla works, the cd00r
source code is available at www.phenoelit.org/fr/
tools.html.

Don’t panic!
Servers are far more public than most computers, and
so are most vulnerable to attack when a weakness
is discovered. The popularity of Linux on the server
market means that Linux vulnerabilities are exploited
heavily once they are discovered.

Desktop computers, on the other hand, are not
usually reachable from the internet, and this means
attackers have far fewer chances to access them.
Linux distros’ repositories are our greatest strength
in fighting malware on the desktop. As long as you
only use trusted repositories, you’re unlikely to have
any problem with malware. That’s true now, and it will
remain true for the foreseeable future.

