
CODING NINJA

www.linuxvoice.com

WHY DO THIS?
• Understand how huge

databases handle
billions of transactions.

• Gain the flexibility of not
having a schema.

• Use the trendiest
database in town.

The web is a great way of sharing data. Anyone,
anywhere in the world can upload information
and make it instantly available to almost

everyone in the world. However, as wonderful as these
web pages are, they do have a problem: it’s hard for
computers to understand them. Web browsers can
obviously render web pages, but they can’t easily
extract information. Take, for example, a web page of
a weather forecast. The browser knows what text to
put where, and which images should be displayed, but
it’s hopeless at understanding the forecast, and can’t
easily pull out the data so it can be displayed in a
different forecast.

When a person or organisation wants to make their
information available for computers to understand it,
they need to create an API (Application Program
Interface). This is a method for programs to extract
the information they need in a computer-readable
format. The most popular method for doing this on
the internet is through REpresentational State
Transfer (REST) APIs.

A RESTful API must be client–server; stateless;
cacheable; layered; code on demand (optional); and
have a uniform interface.

Let’s look at these properties by analysing the
largest RESTful system, the world-wide web. This is a
series of HTML documents that are sent and received
using Hyper Text Transfer Protocol (HTTP). The web
is client–server. This means there’s a separation
between the software that browses the web (such as
Firefox) and the software that serves the web pages
(such as Apache).

The web (or rather, web servers) is stateless. This
means that if you make the same request, you should
get the same result. It doesn’t matter what requests
you’ve sent before this. This still allows for things like
authentication, because this session data can be sent
in the HTTP request along with the URL.

Web resources can be cacheable. To statisfy the
RESTful requirements, not everything has to be
cached, but information needs to be included about
what can and can’t be cached. This is taken care of in
HTTP headers.

When you connect to a website, you could be
connecting directly to the server, or through some
proxy. This is all handled transparently because HTTP
is layered. Code on demand is the only optional aspect
of the REST principals. However, the web does allow
it. This is when the server sends some code to be

executed on the client. In terms of the web, this is
usually JavaScript or a Java applet.

URLs are in a uniform structure, and there’s a
uniform series of four HTTP requests that you can
perform on them (GET, PUT, POST and DELETE) .
Although four are all available in theory, in practice
almost all websites only use GET and POST, the latter
of which is used when you submit a form.

There’s an example API that links an SQL database
to a RESTful service at www.thomas-bayer.com/
sqlrest. If you point your browser there, you’ll see an
XML document describing all the resources available.

You should notice that they’re all resources one
level above /sqlrest/. This is part of the uniform
architectural constraint. If you point your browser to
one of the listed resources – www.thomas-bayer.
com/sqlrest/CUSTOMER/ – you should then see a
list of the customers. Again, each listed resource is
one level above /sqlrest/CUSTOMER/.

This is a public API that allows anyone to change
and delete information without authentication, so it’s
possible that the exact examples we use now won’t
exist any longer in the database. If they don’t, you’ll
have to substitute in other values.

You can view one of the customers by viewing a link
in this list, for example, www.thomas-bayer.com/
sqlrest/CUSTOMER/16. Unlike the other queries
we’ve done, this doesn’t just return a list of resources,
but the actual customer information as an XML file.

We can see that the format of the URLs for this
database is: www.thomas-bayer.com/
sqlrest/<table>/<id>/. Using this, we can extract any
information from the database. We can also

CODE NINJA:
RESTFUL APIS
Access resources from around the web and integrate them into
your own site in a simple, uniform manner.

 TUTORIAL

104

BEN EVERARD

The XML pages are viewable in a web browser, but the
links aren’t clickable, so you’ll have to copy and paste
them into the URL bar.

NINJA CODING

www.linuxvoice.com 105

manipulate the database using other HTTP methods.
POST, PUT and DELETE map to amending a record,
adding a record and deleting a record respectively.
However, you can only generate GET requests using
the URL bar of most web browsers, so we’ll need
another tool to send these requests. There’s a
web-based HTTP tool at http://thomas-bayer.com/
restgate/ that will do what we need.

To add a new item to the database, we use the PUT
method on the URL for the table. So, for example, to
add a new person at ID 0, you’ll need to go to http://
thomas-bayer.com/restgate/, then enter the URL
http://www.thomas-bayer.com/sqlrest/CUSTOMER,
select the method PUT, then in the content text box
(that will appear when you select PUT), enter the
following XML:
<CUSTOMER>
<ID>0</ID>
<FIRSTNAME>Ben</FIRSTNAME>
<LASTNAME>Everard</LASTNAME>
<STREET>xxx</STREET>
<CITY>Brizzle</CITY>
</CUSTOMER>

Note that you’ll have to use a different ID when you
do it as this one’s taken. At the time of writing, this
request returned an error, however, the actual record
was updated. You can see for yourself at http://www.
thomas-bayer.com/sqlrest/CUSTOMER/0/.

Using the same web form, you can amend a
customer’s details. This time, enter the URL http://
www.thomas-bayer.com/sqlrest/CUSTOMER/0/
(again, you’ll need to change the ID to match one
you’ve created), the method POST and the content:
<STREET>Colston Av</STREET>

Finally, you can use DELETE to remove customers.
So far, what you’ve seen is a slightly awkward way

of accessing a database through a browser. This isn’t
at all the point of a RESTful API. The point is to make it
easy for other software to interact with our service.

Doing it in Python
In Python, we can use the requests module to interact
with this RESTful API. This is easy to use, so we’ll use
an Python interactive session, which you can start by
typing Python2 at the command line. Then you need
to import the requests module with:
>>> import requests

A GET request is then simply done with:
>>> r = requests.get(“http://www.thomas-bayer.com/sqlrest/
CUSTOMER/0/”)
>>> print r.content

This will print out the raw XML. If you were doing
this in a real program, you could either manipulate the
XML as strings, or you could use one of the XML
parsing modules to do it for you.

The requests module can also issue POST, PUT and
DELETE requests.
>>> mike_data=’’’<CUSTOMER>
... <ID>897324</ID>
... <FIRSTNAME>Mike</FIRSTNAME>

... <LASTNAME>Saunders</LASTNAME>

... <STREET>xxx</STREET>

... <CITY>Munich</CITY>

... </CUSTOMER>’’’
>>> r = requests.put(“http://www.thomas-bayer.com/sqlrest/
CUSTOMER/”, data=mike_data, headers={‘Content-
Type’:’application/xml’})
>>> r = requests.get(“http://www.thomas-bayer.com/sqlrest/
CUSTOMER/897324/”)
>>> print r.content

This should display the new record we’ve just
created for Mike Saunders. We can now update it to
his nicknames with:
>>> r = requests.post(“http://www.thomas-bayer.com/sqlrest/
CUSTOMER/897324/”, data=”<FIRSTNAME>Mikeyboy</
FIRSTNAME>”, headers={‘Content-Type’:’application/xml’})
>>> r = requests.get(“http://www.thomas-bayer.com/sqlrest/
CUSTOMER/897324/”)
>>> print r.content

Then delete it with:
>>> r = requests.delete(“http://www.thomas-bayer.com/sqlrest/
CUSTOMER/897324/”)

In this case, we’ve been updating a database, but
RESTful APIs exist for all sorts of data source. You
should be able to use the same methods we’ve used
here to access the vast majority of them which use
HTTP. In many cases, you’ll need to authenticate
yourself before you can perform any action (especially
those that modify data), but this should be fully
documented as it differs between APIs.

To go back to the first problem, how could our
program get a weather forecast:
>>> r = requests.get(“http://api.openweathermap.org/data/2.5/
weather?q=Bristol&mode=xml”
)

>>> print r.content
For more information on this weather API, go to

http://openweathermap.org/current.
We’ve looked at Python here, but you should find

equivalent libraries in most languages that make it
just as simple. Once you’ve mastered sending HTTP
requests, the process is quite straightforward. It’s this
simple approach that makes HTTP-based RESTful
APIs so simple and ubiquitous.

The RESTgate webpage
can be used to interact
with almost any HTTP
RESTful API, not just the
ones we’ve used here.

