
TUTORIAL PYTHON 3

www.linuxvoice.com

Keeping our data private is a major concern,
and one way to keep our data safe is via a 
good password. But being human we rarely 

choose a secure password; instead use insecure data 
such as the name of our pet, our date of birth or other 
such details. Data such as this is not really suitable in 
a password, and we are encouraged to create harder 
to guess passwords with a mix of both upper and 
lower case characters along with numbers.

In this project we will be using the popular 
programming language Python, and we will be writing 
the code using the Python 3 syntax, which also 
enables this project to be run on Python 2 systems.
This project can be created using any computer,
including a Raspberry Pi.

For this project you will need
Idle 3 A Python editor for Python 3
pip3 A Python package manager
EasyGUI A GUI library for Python
For this tutorial we're using Linux Mint 17, which is 

based on Ubuntu, and so we will install software using 
the apt package manager. The software is also 
available for other Linux distributions.

To install Idle 3 open a terminal and type in the 
following.

sudo apt-get install idle3
New to Python 3 is the bundling of the pip Python

package manager, which works in a similar manner to 
other Linux package managers. This should be 
installed by default for your distribution, but if this is 
not the case open a terminal and type in the following.
sudo apt-get install python3-pip

Using EasyGUI we can easily create a graphical user interface to capture the user's password.

The password checker in action. Our simple application 
has but one job to do: to keep our passwords strong.

PYTHON 3: 
BUILD A PASSWORD CHECKER
Use programming logic, variables and functions  
to check the strength of your passwords.

 TUTORIAL

LES POUNDER

80

WHY DO THIS?
•  We will learn how to 

accept user input via a 
graphical user interface 
and then check the input 
against an algorithm 
to ensure that the 
password input meets a 
criteria.

TOOLS REQUIRED
•  Python 3 installed on 

your machine.
•  EasyGUI installed on 

your machine.

DISCLAIMER
This project should not be 
used to check any “real 
world” passwords for 
example online banking 
or shopping.



PYTHON 3 TUTORIAL

www.linuxvoice.com 81

With pip for Python 3 installed now we use it to
install EasyGUI, in a terminal type in the following
sudo pip3 install easygui

After a few moments EasyGUI will be installed and
ready for use in our project.

The project
In this project we use Python 3 to write a program that
captures the user's password and checks it against a 
series of conditions. These conditions are:

The password must have six or more characters.
The password must have less than or equal to 12
characters.
There must be at least one integer in the password.
There must be at least one upper case character.
There must be at least one lower case character.
We start the project by importing additional 

modules to expand the abilities of our Python code.
import easygui as eg

In this example we import the easygui module and
rename it as eg, which makes it a lot easier to work 
with. With the imports completed we now create a 
series of functions that handle the input and testing of 
the password.

Firstly we create the function and name it pword():
def pword():

Next we create four global variables that are used
by our function and other functions later in the project. 
These global will contain the data for our project.
    global password
    global lower
    global upper
    global integer

With the variables created we now use one of the
EasyGUI functions to create a dialog box that will 
enable us to enter our password and then save it as 
the global variable password.
    password = eg.enterbox(msg="Please enter your password")
With the password captured and stored as a variable
we can now do a lot of checks.
    length = len(password)

    print(length)
Our first check is get the length of the password,

which is done using the len() function and giving it the 
name of the variable that we would like to check. The 
output of this is stored as the variable length, which 
we then print to the Python shell. We do not need to 
print the output to the shell, but it can really help to 
debug a project quickly.

Now that we know how long 
the password is we need to find 
out what the password is made 
of, which will generally be a mix 
of lower- and upper-case letters 
along with numbers. We create 
three variables: lower, upper and 
integer and they handle lower-case and upper-case 
characters, and integers relates to any numbers in the 
password. For each of these variables we do the 
following.
Count every lower-case letter in the password and save it as a 
variable called lower.
Count every upper-case letter in the password and save it as a 
variable called upper.
Count every integer in the password and save it as a variable 
called integer.

In Python code it looks like this – after each line we
also print the value as a debug measure.
    lower = sum([int(c.islower()) for c in password])
    print(lower)
    upper = sum([int(c.isupper()) for c in password])
    print(upper)
    integer = sum([int(c.isdigit()) for c in password])
    print(integer)

If you are familiar with spreadsheets you will see
that the line is not too dissimilar to the syntax needed 
for LibreOffice or Excel. The term c refers to each 
character in the password, and we can instruct 
Python to look for characters that match islower 
isupper or isdigit. We wrap the value returned in a 

There isn't a great deal of code to this project but it is a 
great meaty project to reinforce your learning and brush 
up your skills.

If your password meets 
the criteria then it will 
be evaluated as a strong 
password, an essential 
part of keeping you safe.

“Our first check is to get 
the length of the password, 
with the len() function.”



TUTORIAL PYTHON 3

www.linuxvoice.com82

helper function that converts the data type returned
into an integer value int(c.islower()). This is not strictly 
necessary as the value returned is already an integer, 
but it helps to sanitise the data just in case anyone 
tries to intentionally break the project. Data 
sanitisation is best practice and a great skill to learn, 
as it is used a lot when working with content on the 
web and in databases.

Our next function has one purpose: to check the 
length of the password against a strict set of criteria. 
Its length must be greater than or equal to six 
characters but it must also be less than or equal to 12 
characters in length. A good password should be of a 
reasonable length, but a long password does not 
equal a secure password. 

In the code snippet following we first define a new 
function called length() and then instruct Python that 
we wish to use the global variable password  that we 
created in our first function. 
def length():
    global password

Next we create an if..elif conditional statement that
will first check to see if the length of the password is 
less than six characters. If this condition is true we will 
use EasyGUI's msgbox function to generate a pop-up 
dialog box that advises the user that their password is 
too short and that they should try again.
    if len(password) < 6:
        eg.msgbox(msg="Your password is too short, please try 
again")

Similar to the previous condition we tested, we now
use else if, which is shortened to elif in Python to run 
another test on the password, which in this case is to 
see if the password is longer than 12 characters. If 
this is the case, a dialog box pops up to advise the 
user to try again.

    elif len(password) > 12:
        eg.msgbox(msg="Your password is too long, please try 
again")

Our last function runs a series of tests against the
password. These tests are there to assess that the 
password meets our criteria that we defined earlier in 
the project.

To start we name our function strength() and 
instruct Python that we wish to use the global 
variables that we created earlier.
def strength():
    global lower
    global upper
    global integer

We now reuse an if..elif conditional statement that
we used in our length() function to run three 
conditional tests.

Firstly we compare the value stored in the variable 
lower to see if it is lower than 1, which means there 
are no lower-case characters in the password. If this 
is correct then we use the EasyGUI msgbox function 
to create a dialog box that informs the user that there 
are no lower-case characters in their password.
    if (lower) < 1:
        eg.msgbox(msg="Please use a mixed case password with 
lower case letters")

After the lower-case character test is complete we

Getting the latest version 
of Python 3 is really simple 
– you can download it via 
your distribution's package 
manager or download the 
latest package from the 
Python website.

Project code

You can find the complete code for this project at our 
GitHub repository https://github.com/lesp/LinuxVoice_
Issue12_Password_Checker. For those of you unfamiliar 
with Git you can download the complete package as a Zip 
file from https://github.com/lesp/LinuxVoice_Issue12_
Password_Checker/archive/master.zip



PYTHON 3 TUTORIAL

www.linuxvoice.com 83

Les Pounder divides his time between tinkering with 
hardware and travelling the United Kingdom training teachers 
in the new IT curriculum.

now run the same test looking for upper-case
characters.
    elif (upper) < 1:
        eg.msgbox(msg="Please use a mixed case password with 
UPPER case letters")

Our last test is exactly the same, but this time we
are looking for integers in our password.
    elif (integer) < 1:
        eg.msgbox(msg="Please try adding a number")

To close the if..elif conditional statement we use an
else condition which requires no condition to be used. 
For example, if all of the previous statements evaluate 
as false then our else condition must be true.
    else:
        eg.msgbox(msg="Strength Assessed - Your password is 
ok")

With our last function completed our attention now
turns to threading the functions together into a 
sequence.

Firstly we instruct Python that we wish to run the 
following code in an infinite loop, which in Python is 
while True:
while True:

Inside our infinite loop we call the three functions
that we created earlier.
    pword()
    length()

    strength()
With the functions called and their contents

executed, the next part of the loop is a question to the 
user, asking if they would like to run the program 
again, and their answer to this question is captured 
using EasyGUI's choicebox dialog. Their choices are 
limited to Yes and No via the choices argument. The 
answer is then stored inside a variable called answer.
    answer = eg.choicebox(title="Try again?", msg="Would you 
like to try again?", choices=("Yes","No"))

In our last section of code we use an if statement to
check the value of the variable answer. If it does not 
match “Yes”, which in Python can be written as !=, 
then the loop is broken via break and the program 
ends.
    if answer != "Yes":
        break

What have we learnt?
In this project we have
used Python 3 to 
develop a simple 
program which 
evaluates a password.

We provided a
graphical user 
interface to capture the password.
We created a function to evaluate the contents.
We tested using programming logic to ascertain the
number of lower- and upper-case characters along 
with the number of integers present.
We used conditional logic to compare the actual
results against what we expected to find and where 
they were different we advised the user as such. 

Python 3

Python has come a long way since its début in 
1989, when it started as the personal project of 
a chap called Guido van Rossum, who needed a 
project to keep him busy over the Christmas period. 
In the passing years Python has improved with each 
release, and since around 2001 Python 2 has been 
the default version. In recent years, however,  there 
has been a strong move towards leaving the Python 
2 series and moving on to version 3, which has been 
supported by such organisations as the Raspberry 
Pi Foundation.

But why should we move to Python 3? Well 
the most obvious reason is that the Python core 
developers are no longer working on any code or 
projects for Python 2. In fact they are so focused 
on Python 3 that the Python team have created an 
“un-release schedule for Python 2.8”, or in other 
words, Python 2.7 series is the last of that series. 
There will be bugfixes and updates for Python 2 for 
a few years yet, but now is the time to migrate your 
projects to Python 3.

There are a few changes to Python 3 syntax for 
example, in Python 2, print is a statement, and will 
pick up whatever is inside the quotation marks, 
like so:
print “Hello World”

In Python 3, print is now a function that comes 
with a number of arguments to make it a lot more 
functional, including options to control how content 
is separated, ended and error control.
print(“Hello World”)

User input
In Python 2 raw_input is used to capture the 
keyboard input via the Python shell.
raw_input(“What is your name?”)

In Python 3 this has been renamed as input but it 
performs the same actions as raw_input.
input(“What is your name?”)

Working with lists
In Python 2, working with a list called “names” we 

pass it two strings, in this case the name of my dog 
and I. To check the contents we print the list to the 
shell. Now using del we delete the contents of the 
list and then use print to check that the list has 
been deleted.
names = [“Les”, “Dexter”]
print(names)
del(names)
print(names)

In Python 3 lists have been refined with functions 
that handle printing the contents of the list, in 
this example names.copy() prints the contents of 
the list. To clear the list we use the names.clear() 
function.
names = [“Les”, “Dexter”]
names.copy()
names.clear()
names.copy()

These are but a few changes made to Python 3. 
Head over to https://docs.python.org/3 for a full list 
of all the changes and additions to Python.

The program is designed to loop infinitely enabling many 
passwords to be checked.

“These tests are there to assess 
that our password meets the 
criteria that we defined earlier.”


