
TUTORIAL UNIX

www.linuxvoice.com

Unix is the oldest operating system that’s still
widely used today. Linux -- which, if you’re
reading this, you’re presumably interested in

-- is just one of the many Unix clones and
descendants that are kicking around the computer
world, alongside UNIX (the trademark is all-caps)
itself. Unix and Unix-like systems have always been
popular as servers, with a rather smaller population of
‘users’ alongside them; but with the rise of the
smartphone, nearly a billion people worldwide now
have a Unix-type box in their pocket. Pretty good for a
45-year-old Bell Labs side project!

Bell Labs: starting out
Back in 1968, Bell Labs was involved with a shared
project called Multics, an early time-sharing operating
system for the GE-645 mainframe. However, the
project, while functional for those working on it, wasn’t
producing the widely-available OS that Bell was after,
and they pulled out. The last of the Bell people working
on it (Ken Thompson, Dennis Ritchie, Doug McIlroy
and Joe Ossanna) were keen not to lose their own
access to interactive computing, so spent 1969 partly
trying to persuade management to buy them a
computer, and partly developing what would become
the Unix filesystem. In his spare time, Thompson
rewrote a game called Space Travel (a sort of solar
system simulator where the player also piloted a ship),

together with a bunch of supporting packages, to run
on a spare PDP-7 that was kicking around.

Preparing programs for the PDP-7 was
complicated, requiring them to be created on a GE
635 and the paper tapes carried by hand to the PDP-7.
So Thompson began implementing a full operating
system on the PDP-7: filesystem, processes, small
utilities, and a simple shell. It was 1970 when
Kernighan suggested calling the new system Unics or
Unix – a play on Multics.

The filesystem developed on that first machine had
i-nodes, directories, and device files, just like modern
Unixes, but there were no path names (they were
substituted by a complicated linking system). The
system had processes, too, but they were very limited,
with no forking or waiting. A fascinating 1979 paper
by Dennis Ritchie (available online from Bell Labs –
http://cm.bell-labs.com/who/dmr/hist.html) goes
into detail about the various calls and processes.

In 1970–1 the system was rewritten for a new
PDP-11, together with a text editor and formatter (roff).
The machine began offering a text-processing service
to the Patent department, and three typists from that
department came to use it. This was an important
part of demonstrating that Unix was genuinely useful,
even if it got a little in the way of the programmers!

It was also in 1971 that Ken Thompson and
Dennis Ritchie began working on the C programming
language. Thompson had already developed a
language called B, but although some general
systems programs were written in it, the operating
system basics were still in assembler (see page 106
for more on this minimalist way of coding). Once C
was developed, it was used to rewrite the kernel into C
in 1973 – the first time that an operating system had
been written in anything other than assembler. This
also let them demonstrate just how genuinely useful
C was (and continues to be: it’s still under the hood of
plenty of programs).

In the mid-70s, UNIX began to be shipped out under
licence, with its full source code included. It was
versioned according to editions of the user manual,
so Fifth Edition UNIX and UNIX Version 5 are the
same. By 1978, when UNIX/32V was released for the
new VAX system, over 600 machines were running
some variety of UNIX, and various people (such as the
BSD folk) were adapting it. At this point, an ongoing
antitrust case still prevented AT&T from releasing a
commercial product. When this was finally resolved in

UNIX, LINUX AND HOW WE
GOT WHERE WE ARE TODAY
Linux didn’t just come from thin air you know. Take a look back at
how we got from the 1970s to the OS we know and love today.

 TUTORIAL

96

JULIET KEMP

Ken Thompson (sitting)
and Dennis Ritchie at a
PDP-11. Possibly even
working on C at the time!
Copyright: CC-BY-SA Peter Hamer

UNIX TUTORIAL

www.linuxvoice.com

1983, they released a commercial licence version of
UNIX System V. Since the licence conditions weren’t
great for university use, BSD became more popular.
(And, indeed, the BSD networking code made it back
into the main Unix kernel.) Various other companies
also developed their own versions of UNIX under
licence; which turned in due course into the “Unix
wars” where different companies tried to promote
rival standards. POSIX was eventually the most
successful, designed to be easy to implement on both
BSD and System V.

AT&T sold UNIX to Novell in the late 1980s, then
(after UnixWare did badly) Novell transferred it
to the X/Open Consortion, which now sets UNIX
specification standards. Some parts of the licensing
business were also sold to SCO, which in due course
led to the SCO/Linux legal action (see boxout).

There are five commercial UNIX-certified OSes still
available: OS X, HP-UX, Solaris, Inspur K-UX (used on
mainframes), and AIX. Unfortunately you can’t try out
HP-UX or IBM’s AIX without going through HP/IBM (or
a partner) and spending a large sum of money; and
for Inspur K-UX you need a mainframe. But there’s
more below on OS X and Solaris.

BSD Unix
The University of California, Berkeley, had a Unix
Version 4 system running in 1974, and when Ken
Thompson was there in 1975 he helped install Version
6. As more people, and other universities, became
interested in the system, Bill Joy, a Berkeley grad
student, started creating the Berkeley Software
Distribution. This was an add-on to Version 6 Unix
which included a Pascal compiler and the ex line
editor (written by Joy). This was possible because
Unix was still being released with full source code at
the time. The second release, 2BSD, in 1979, included
the text editor Vi and the C shell csh, both still available
on Unix systems. (I wrote this article in Vim, an
extended version of Vi, which dates back to 1991.)

BSD became increasingly popular as it improved –
it was the OS of choice for VAX minicomputers (used
for timesharing) at the start of the 80s. It included

delivermail (a sendmail precursor) and the curses
library, among other useful bits of software.

In 1989, BSD released its networking code
separately, under the BSD licence. Prior to this, all
BSD releases included AT&T Unix code, so post-
1983 had required an (expensive) AT&T licence.
The networking code had been developed entirely
outside this, and various people were interested in
acquiring it separately. The general BSD distribution
was continuing to improve, and in 1990 the BSD
team decided to rewrite all the AT&T-dependent code,
resulting in Networking Release 2 in 1991, a freely
available OS that was the basis for ports to Intel
80386 architecture and which would later become
NetBSD and FreeBSD.

Networking is probably the BSD team’s most
important contribution to computing. Berkeley
sockets, the first Internet Protocol libraries available
for Unix, became the standard internet interface. The
POSIX API is basically Berkeley with a few changes,
so all modern OSes have some implementation of the
Berkeley interface.

Unfortunately, the then-owners of the Unix
copyright sued in 1992, and while the lawsuit was
settled in 1994 largely in the favour of BSD (only three
of the 18,000 files had to be removed and a handful
more modified), development slowed massively
during those two years. As it happens, this was
while Linux was being developed. The slow release
of 386BSD was part of what prompted Torvalds to
create the Linux kernel.

The modern operating systems of FreeBSD,
OpenBSD, and NetBSD are all descendants of the
386 port and of 4.4BSD-Lite. They in their turn have
various descendants, including SunOS and Mac OS X.
Most of these are open source and available under the
BSD Licence. Sendmail, Vi, curses, and csh are a few of
the BSD programs and utilities still in use today.

Of the currently available BSDs, FreeBSD is probably
the most friendly to the average non-developer user
(though they all have good points, and NetBSD has
the distinction that you can install it on a toaster).
You can download FreeBSD from https://www.
freebsd.org/where.html, which also has good user
documentation. FreeBSD’s install is text-based and
will be familiar if you’ve installed Debian in text mode.

97

GNU tools
Here’s just a few of the GNU tools you may
be using:

 The Bash shell.
 The coreutils package, which provides ls,
mv, rm, cat, and so on.

 The boot loader Grub.
 The sysutils package, which provides
utilities to manage users and groups.

 tar and gzip.
 grep for searching through text files.
 make and autotools for building software.
 glibc, the C library, underlies a huge range

of user software. You may never use it
directly, but it’s essential to your system.

 The GNU Compiler Collection compiles
languages including C, C++, and Java.

 The graphics program Gimp.
 The Gnome desktop project (although this
is effectively a separate entity now, it is
officially a GNU project).

 The venerable text editor GNU Emacs…
as well as scientific software, desktop
software, internet software, and a whole
plethora of development tools.

I couldn’t get Gnome running on FreeBSD but Xfce
worked fine – the apps in the menu are probably from the
abortive Gnome install though.

TUTORIAL UNIX

www.linuxvoice.com98

The basic install is deliberately very sparse; afterwards
you’ll need to install any packages you want. The
binary package management system is pkg, so to get
the Gnome desktop I logged into the new system as
root, then typed:
$ /usr/sbin/pkg # this bootstraps pkg itself
$ pkg install xorg
$ pkg install xfce
$ echo “exec /usr/local/bin/startxfce4” > /home/juliet/.xinitrc

pkg search name is a useful command to find
other available packages, and the documentation and
other support for FreeBSD seems good. However,
don’t expect to log on immediately into a fully-featured
desktop system; it expects you to decide the details of
what you install for yourself.

BSD to SunOS to Solaris
In 1982, Bill Joy, one of the main BSD developers,
joined three Stanford graduates to found Sun
Microsystems. Their first generation of workstations
and servers were based around a design created by
Andy Bechtolsheim (co-founder of Sun Microsystems)
while still studying at Stanford. The very first software
was Sun UNIX 0.7, based on UniSoft Unix v7, but a
year later, SunOS 1.0, based on 4.1BSD, was released.

SunOS continued to be based on BSD until the
final update on SunOS4 in 1994. One of their major
developments was the creation, in 1984, of the
NFS (Network File System) protocol, allowing client
computers to access files (largely) transparently
over a network. NFS is an open standard so can be
implemented by anyone. It’s still used in modern
networks, especially Unix and Unix-like ones.

In the late 1980s, AT&T and Sun began a joint
project to merge BSD, System V, and Xenix, resulting
in Unix System V Release 4 (SVR4). In 1991, Sun
replaced SunOS4 with Solaris, based on SVR4 instead
of on BSD. (So, still a Unix derivative, just with a
different parent.) Solaris included OpenWindows (a
GUI) and Open Network Computing. SunOS (current
release SunOS5.11) still exists as the core of Solaris
(current release Solaris 11.2), but the Solaris brand is
used externally.

Solaris has always been heavily associated with
Sun’s own SPARC hardware, but it’s also used on
i86pc machines worldwide, and is supported by
several of the major server manufacturers including
Dell, IBM and Intel. Linux distros are also available
for SPARC and i86pc hardware. Since 2007, Sun has
also supported the open source OpenSolaris project,
although it is now known as Solaris 11 Express.

Solaris 11 is free (but not freely licenced) to
download for personal use. I tried out the live CD,
which was very slow to download, but once there,
booted fine on a 64-bit virtual machine.

The basic terminal commands of Solaris 11
are the same as in Linux, and you can find further
documentation on the Oracle website. The differences
between Solaris and Linux become (in my experience)
more noticeable as you delve further into the guts of
the system; the average desktop user may not notice
anything beyond the difference in package availability.

NeXTSTEP/Mac OS/Darwin
NeXT was founded by Steve Jobs after he was
pushed out of Apple in 1985. They developed
NeXTSTEP, an object-oriented, multitasking OS to run
on their workstations, based on Unix (including some
BSD code) and various other bits and pieces. Tim
Berners-Lee developed the first browser,
WorldWideWeb, on a NeXT cube running NeXTSTEP;
Doom and Quake were also developed on NeXT
machines. In 1993, OPENSTEP was created by Sun
and NeXT; before Apple decided to use it as the basis
of what would become Mac OS X, and bought out
NeXT. (Jobs, of course, returned to Apple along with
his company.)

Mac OS X is based on the XNU (X is Not Unix)
kernel, developed for NeXTSTEP, with all the usual
Unix commands and utilities available on the
command line. The kernel has code from FreeBSD
along with other improvements and changes. It’s
POSIX compliant, which means that many BSD/
Linux/Unix packages can be recompiled for OS X
with a bit of work (as with HomeBrew, Fink, and other
similar projects). The core of OS X is released as the
open-source Darwin. iOS is also based on OS X, and
Android (Linux-based) and iOS between them have
a 90% share of the smartphone market. So it’s very
likely that your smartphone runs a Unix-like OS, giving
Unix today an unprecedented userbase.

The GNU Project
Richard Stallman started the GNU Project in 1983,
with the aim of creating “a sufficient body of free
software […] to get along without any software that is
not free”. GNU stands for ‘GNU’s Not Unix’: the
proposed GNU operating system was Unix-like, but
Unix was proprietary and GNU was to be free.

The first piece of software released by the GNU
project was GNU Emacs (an implementation of the
existing Emacs text editor). They had a debugger,
parser, and linker; they also needed a free C compiler

The Hurd running on
VirtualBox. No graphical
desktop! (Though X is
supported.) The ‘translator’
trial from the README is
shown.

PRO TIP
The Free Software
Foundation argue that
as GNU software makes
up a significant part of a
‘Linux’ system (more than
the kernel does in many
systems), it should be
referred to as GNU/Linux.
This isn’t reflected in
mainstream usage.

UNIX TUTORIAL

www.linuxvoice.com 99

and tools. By 1987 they had an assembler, nearly the
GCC C compiler, GNU Emacs, and a bunch of utilities,
together with an initial kernel. Although the rest of the
software development carried on at a decent pace, by
1992 they had all the major components except the
kernel. The GNU Hurd kernel started development in
1990, based on the Mach microkernel, but for various
reasons moved very slowly (it is still not ready for
production environments, although the existence of
Linux has doubtless slowed development).

You can try out the GNU/Hurd project courtesy of
Debian. Note that it is not yet complete and it’s not
recommended for production use. If you just want to
give it a quick go, you can get a virtual image thus, and
run it on KVM:
$ wget http://ftp.debian-ports.org/debian-cd/hurd-i386/current/
README.txt
$ tar zxf debian-hurd.img.tar.gz
$ kvm -no-kvm-irqchip -drive file=debian-hurd*.
img,cache=writeback -m 1G
Or on VirtualBox if you convert it to the correct format:
$ VBoxManage convertfromraw debian-hurd*.img debian-hurd.
vdi --format vdi

(This information from http://ftp.debian-ports.org/
debian-cd/hurd-i386/current/README.txt; more
detailed information available there.)

The Hurd’s notion of ‘translators’ is new to me: a
translator basically translates between one sort of
data structure and another, for example from disk
storage to the traditional filesystem. Check out the
GNU Hurd website (https://www.gnu.org/software/
hurd/index.html) for more information on this and
other features of the Hurd. If you want to install the
Hurd, the instructions suggest that this is a lot like
installing Linux was about 15 years ago when I first
tried it out, and requires a fair amount of messing
around with text files and configuring by hand. (Ah,
nostalgia…) Currently only about 50% of the Debian
packages are available for the Hurd.

Linux
Finally, we come, of course, to Linux. Linux is not, in
fact, an actual Unix variant. It’s related to Minix, which

was system-call compatible with Seventh Edition Unix
but was created from scratch. In 1991, Linus Torvalds
was irritated by the lack of a free kernel (GNU Hurd
didn’t exist and BSD were having problems), so
started writing one. He developed it on a Minix system
using the GNU C compiler, and was influenced by
many Minix design decisions, but there was no actual
code overlap (see the boxout for SCO’s legal claims).
The first release was on 25 August 1991. Unlike
Minix’s microkernel (a microkernel has as little
software as possible in the kernel and moves
functions like device drivers and filesystems into
userspace), Linux has a monolithic kernel, where all
the operating system is in kernel space.

Initially, it was just a kernel distribution, the idea
being that you would also get hold of the GNU tools
and that would give you a full system. GNU and Linux
also had different licences. In Dec 1992 Linux was
released under the GNU GPL, which in due course
meant the whole thing could be distributed as an
integrated system.

From there… well, there are a huge number of Linux
distros, you can build your own, and you’re reading
a whole magazine dedicated to Linux. While it isn’t
Unix, it’s largely Unix-compatible (it adheres to POSIX
standards even if uncertified) and broadly speaking,
if you know Linux you can find your way around Unix
(though as any sysadmin will tell you there are a fair
few gotchas in the details of utilities and syntax).

If you’re interested in exploring the various Unixes
further, try out some of the systems I tried, or one
of the many others. For more on Unix, here’s a cool
(but huge) Unix family tree; there are also links at the
bottom of this page – www.levenez.com/unix. And
here’s a Unix timeline (www.unix.org/what_is_unix/
history_timeline.html).

Juliet Kemp is a scary polymath, and is the author of
Apress’s Linux System Administration Recipes.

Here’s the Hurd after
running startx from the
console. All very basic
by default (no graphical
browser here…).

SCO/Linux lawsuit
Various bits of Unix were sold on to Novell in 1993, which
then sold parts of it again to what became SCO. In 2003,
SCO filed a lawsuit against IBM for $1 billion (later
$5 billion), claiming that IBM had transferred SCO property
into Linux. Another four major lawsuits followed.

SCO’s right to be identified as the ‘owner’ of UNIX was
challenged by Novell, so SCO sued them too. Assorted
legal wranglings followed. SCO also claimed that some
UNIX code had been transferred line-for-line into Linux, but
seemed reluctant to specify the details.

In 2010, after several court rulings and a jury trial, Novell
was found to be the owner of the UNIX copyright, and has
announced that “We don’t believe there is Unix in Linux”. As
of December 2014, SCO’s case against IBM for ‘devaluing’
its version of UNIX remains open, though now with a
reduced scope.

